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About this booklet
This booklet contains chapter notes, hints, answers to exercises, addenda, and errata for the book
Functional Programming in Scala¹ by Paul Chiusano and Rúnar Bjarnason. There is no original
material here, except for this brief introduction. This booklet is just a collection of material that is
freely available online².

Why make this?

Functional Programming in Scala is a book that relies heavily on exercises. This can make it difficult
to consume by reading rather than doing. Since the exercise answers, hints, and chapter notes are
all online, a number of people have expressed difficulty studying the book on a train, on flights, in
a classroom setting, or generally where there is no internet connection or where it’s inconvenient
to use a laptop. So what I’ve done is literally print all of that material in a single document, as a
companion for the book itself. Its purpose is to be convenient to use as a hardcopy, with an eBook
reader, a tablet, or a phone.

License

This booklet, like the material it aggregates, is released under a permissive MIT license³. A copy of
the license is provided at the front of this booklet. You are free to make copies of this booklet and
distribute them as widely as you want.

¹http://manning.com/bjarnason
²http://github.com/fpinscala/fpinscala
³http://en.wikipedia.org/wiki/MIT_License

http://manning.com/bjarnason
http://github.com/fpinscala/fpinscala
http://en.wikipedia.org/wiki/MIT_License
http://manning.com/bjarnason
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Errata
This is a list of post-publication errata for the first published version of Functional Programming in
Scala. To submit new errata please open an issue⁴ in the book’s GitHub repository.

Pg xviii in About this Book: URL is incorrectly listed as https://github.com/fpinscala/fpinscla (note
missing ‘a’), should be https://github.com/fpinscala/fpinscala

Pg 7 : In throw new Exception, Exception should not be bolded, in the code listing at the top of the
page.

Pg 10: URL in footnote is incorrectly listed as https://github.com/pchiusano/fpinscala, should be
https://github.com/fpinscala/fpinscala

Pg 19: Parenthetical phrase in footnote is missing a closing parenthesis.

Pg 55: employeesByName.get("Joe") should be lookupByName("Joe") at the top of the page.

Pg 82: Int.MaxValue is incorrectly capitalized as Int.maxValue in the exercise prompt for 6.1

Pg 86: Definition of nonNegativeLessThan at bottom of page incorrectly reuses rng variable for
recursive call. Definition should be:

def nonNegativeLessThan(n: Int): Rand[Int] = { rng =>

val (i, rng2) = nonNegativeInt(rng)

val mod = i % n

if (i + (n-1) - mod >= 0)

(mod, rng2)

else nonNegativeLessThan(n)(rng2)

}

Pg 74: Figure contains a typo, “strean elements” instead of “stream elements”

Pg 150: Listing 9.1 has a gratuitous nonstrict function argument in the definition of | in ParserOps.
The definition should be:

case class ParserOps[A](p: Parser[A]) {

def |[B>:A](p2: Parser[B]): Parser[B] = self.or(p,p2)

def or[B>:A](p2: Parser[B]): Parser[B] = self.or(p,p2)

}

Pg 150: Examples given for listOfN are incorrect. Should be:

⁴https://github.com/fpinscala/fpinscala/issues

https://github.com/fpinscala/fpinscala/issues
https://github.com/fpinscala/fpinscala/issues
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run(listOfN(3, "ab" | "cad"))("ababcad") == Right(List("ab","ab","cad"))

run(listOfN(3, "ab" | "cad"))("cadabab") == Right(List("cad","ab","ab"))

run(listOfN(3, "ab" | "cad"))("ababab") == Right(List("ab","ab","ab"))

Pg 184: Exercise 10.13 incorrectly defines Leaf as a case object. It should be case class:

case class Leaf[A](value: A) extends Tree[A]

Pg 187 : Definition of signature for map on Option has incorrect return type, should be:

def map[A,B](oa: Option[A])(f: A => B): Option[B]

Pg 238: Definition of printLine has a typo, an extra Return constructor, should be:

def printLine(s: String): IO[Unit] = Suspend(() => println(s))

Pg 240: REPL session has a typo, should be:

val g = List.fill(100000)(f).foldLeft(f) {

(a, b) => x => Suspend(() => ()).flatMap { _ => a(x).flatMap(b)}

}

Note: we could write a little helper function to make this nicer:

def suspend[A](a: => IO[A]) = Suspend(() => ()).flatMap { _ => a }

val g = List.fill(100000)(f).foldLeft(f) {

(a, b) => x => suspend { a(x).flatMap(b) }

}

Pg 241: TrailRec should be TailRec at the top of the page.

Pg 285: Code snippet has an incorrectly named type parameter, currently reads:

case class Await[A,O](

req: Is[I]#f[A], recv: Either[Throwable,A] => Process[Is[I]#f,O]

) extends Process[Is[I]#f,R] // `R` should be `O`

Should read:
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case class Await[A,O](

req: Is[I]#f[A], recv: Either[Throwable,A] => Process[Is[I]#f,O]

) extends Process[Is[I]#f,O]

Pg 262: List 14.3 STArray.apply has a typo, should be:

object STArray {

def apply[S,A:Manifest](sz: Int, v: A): ST[S, STArray[S,A]] =

ST(new STArray[S,A] {

lazy val value = Array.fill(sz)(v)

})

}

Pg 275: Await in the definition of loop is incorrect. Should be await.



Chapter notes
Chapter notes provide historical context, links to further reading, and additional discussion or
connections to help tie the material we’ve covered in the book to the larger practice and research of
the FP community. If you’re interested, we encourage you to do someWikipedia surfing and further
exploration using some of the content covered here as a branching-off point.

Many of the chapter notes link to resources that use the Haskell language⁵. We recommend reading
the brief introduction to Haskell, which gives an overview of Haskell for Scala programmers.

A more up-to-date version of this content is available on the FPiS community Wiki.⁶

Getting answers to your questions

If you have any questions about the book, or about functional programming in Scala (or in general),
here are some suggestions:

• Ask on the scala-functional mailing list⁷
• Talk to Paul⁸ and Rúnar⁹ directly on Twitter.
• For questions regarding functional programming with the Scalaz library, ask on the Scalaz
mailing list¹⁰.

• Post your question on the FPiS community Wiki.¹¹

Notes on chapter 1: What is functional programming?

See the Wikipedia articles on functional programming¹² and referential transparency¹³.

Why functional programming matters

In this chapter we highlight some of the benefits of functional programming. A classic article that
gives some justification for FP is John Hughes’sWhy Functional Programming Matters¹⁴.

⁵http://www.haskell.org
⁶https://github.com/fpinscala/fpinscala/wiki
⁷https://groups.google.com/forum/#!forum/scala-functional
⁸http://twitter.com/pchiusano
⁹http://twitter.com/runarorama
¹⁰https://groups.google.com/forum/#!forum/scalaz
¹¹https://github.com/fpinscala/fpinscala/wiki
¹²http://en.wikipedia.org/wiki/Functional_programming
¹³http://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29
¹⁴http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf

http://www.haskell.org
https://github.com/fpinscala/fpinscala/wiki
https://groups.google.com/forum/#!forum/scala-functional
http://twitter.com/pchiusano
http://twitter.com/runarorama
https://groups.google.com/forum/#!forum/scalaz
https://groups.google.com/forum/#!forum/scalaz
https://github.com/fpinscala/fpinscala/wiki
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29
http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf
http://www.haskell.org
https://github.com/fpinscala/fpinscala/wiki
https://groups.google.com/forum/#!forum/scala-functional
http://twitter.com/pchiusano
http://twitter.com/runarorama
https://groups.google.com/forum/#!forum/scalaz
https://github.com/fpinscala/fpinscala/wiki
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Referential_transparency_%28computer_science%29
http://www.cs.kent.ac.uk/people/staff/dat/miranda/whyfp90.pdf


Chapter notes 7

Referential transparency and side effects

We introduce functional programming as programming with referentially transparent expressions.
Our definition of referential transparency in the chapter is a little bit simplistic, but it serves our
purposes for the time being. We discuss a more expanded notion of referential transparency in
chapter 14 on “local effects”.

A subtlety in the definition of RT given in the chapter is the meaning of “without affecting the
meaning”. What is themeaning of a program? To answer this, we need to consider the programwith
regard to some evaluator, or in the context of some other program. That is, the meaning of a program
depends very much on how we interpret or evaluate it, and whether some effect of evaluation is to
be considered a side effect depends on the observer. For example, the fact that memory allocations
occur as a side effect of data construction is not something we usually care to track or are even able
to observe on the JVM. So ultimately what we consider to break referential transparency depends
very much on what we can or care to observe.

See for example What purity is and isn’t¹⁵ for a discussion of purity with regard to an evaluator,
and Is network I/O always worth tracking?¹⁶ for a more philosophical take on what constitutes a side
effect.

Notes on chapter 2: Getting started

We assume in this chapter that you have the Scala compiler and interpreter already up and running.
See the documentation page of Scala’s website¹⁷ for more details about how to get Scala set up and
links to lots of supplementary material about Scala itself.

Factorial and Fibonacci

We also assume some familiarity with the factorial function¹⁸ and we give only a brief explanation
of the Fibonacci sequence¹⁹.

Lambda calculus

The notions of first-class and higher-order functions are formalized by the lambda calculus²⁰.

Parametric polymorphism

For more on parametric polymorphism, see the Wikipedia article.²¹

¹⁵http://blog.higher-order.com/blog/2012/09/13/what-purity-is-and-isnt/
¹⁶http://pchiusano.github.io/2014-05-21/what-effects-are-worth-tracking.html
¹⁷http://www.scala-lang.org/documentation/
¹⁸http://en.wikipedia.org/wiki/Factorial
¹⁹http://en.wikipedia.org/wiki/Fibonacci_number
²⁰http://en.wikipedia.org/wiki/Lambda_calculus
²¹http://en.wikipedia.org/wiki/Type_variable

http://blog.higher-order.com/blog/2012/09/13/what-purity-is-and-isnt/
http://pchiusano.github.io/2014-05-21/what-effects-are-worth-tracking.html
http://www.scala-lang.org/documentation/
http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Type_variable
http://blog.higher-order.com/blog/2012/09/13/what-purity-is-and-isnt/
http://pchiusano.github.io/2014-05-21/what-effects-are-worth-tracking.html
http://www.scala-lang.org/documentation/
http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Lambda_calculus
http://en.wikipedia.org/wiki/Type_variable
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Parametricity

When we can “follow the type” of a function to derive the only possible implementation, we say
that the definition is given by parametricity. See the Wikipedia article on parametricity²², and Philip
Wadler’s paper Theorems for free!²³

Curry

The idea of Currying²⁴ is named after the mathematician Haskell Curry.²⁵ He also discovered one of
the most important results in computer science, the Curry-Howard isomorphism²⁶ which says that
a program is a logical proof, and the hypothesis that it proves is its type.

Function composition

Function composition in functional programming is closely related to function composition in
mathematics.²⁷

FAQ for chapter 2

Are tail calls optimized if the @annotation.tailrec annotation isn’t there?

They are still optimized, but the compiler won’t warn you if it can’t do the tail call optimization.

Is there a list of other annotation types somewhere?

See the Scaladoc for the Annotation class²⁸, and expand the ‘known subclasses section’.

Is the common style to define loops using local function, rather than a
(private) standalone function?

Yes, this is much more common. There’s no need to pollute the namespace with helper functions
you aren’t expecting to be called by anyone.

Is a || go(x) considered a tail call? What about a && go(x)?

Yes

²²http://en.wikipedia.org/wiki/Parametricity
²³http://homepages.inf.ed.ac.uk/wadler/topics/parametricity.html
²⁴http://en.wikipedia.org/wiki/Currying
²⁵http://en.wikipedia.org/wiki/Haskell_Curry
²⁶http://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
²⁷http://en.wikipedia.org/wiki/Function_composition
²⁸http://www.scala-lang.org/api/current/index.html#scala.annotation.Annotation

http://en.wikipedia.org/wiki/Parametricity
http://homepages.inf.ed.ac.uk/wadler/topics/parametricity.html
http://en.wikipedia.org/wiki/Currying
http://en.wikipedia.org/wiki/Haskell_Curry
http://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
http://en.wikipedia.org/wiki/Function_composition
http://en.wikipedia.org/wiki/Function_composition
http://www.scala-lang.org/api/current/index.html#scala.annotation.Annotation
http://en.wikipedia.org/wiki/Parametricity
http://homepages.inf.ed.ac.uk/wadler/topics/parametricity.html
http://en.wikipedia.org/wiki/Currying
http://en.wikipedia.org/wiki/Haskell_Curry
http://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
http://en.wikipedia.org/wiki/Function_composition
http://www.scala-lang.org/api/current/index.html#scala.annotation.Annotation
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Notes on chapter 3: Functional data structures

TheWikipedia article on algebraic data types²⁹ has further discussion about the theory behind ADTs.

Linked lists

The singly-linked list³⁰ (also called a cons list) we cover in this chapter is one of the simplest purely
functional data structures. It has good performance for linear traversal, but it’s not very good for
random access or list concatenation.

Random access vectors and finger trees

A better structure for random access is Vector³¹ in the standard library. It provides constant time (or
nearly enough to constant time) access to arbitrary elements in the structure. Vectors can be seen as
a specialization of the idea of a Finger Tree³².

Difference lists

The Difference List³³ can provide efficient (constant time) concatenation of lists. The idea is that
instead of having a list, we simply compose functions that operate on lists.We can compose functions
in constant time, and pass an actual list to the composite function as late as possible.

Cost amortization

Reasoning about complexity of algorithms works a bit differently in a persistent (immutable) setting.
We often make use of the fact that the cost of an expensive operation can be amortized over a vastly
larger number of very inexpensive operations. An example of this kind of amortization is the cost
of the concatenation operation on difference lists (see above). Operating on an actual list takes O(n)
time, but we can spread this cost over a number of operations that we compose using the DList. This
is an example of cost amortization³⁴.

Purely Functional Data Structures

Chris Okasaki’s book Purely Functional Data Structures³⁵ (Cambridge University Press, 1999; ISBN:
0521663504) gives a thorough treatment of amortization. It is also the canonical text on efficient

²⁹http://en.wikipedia.org/wiki/Algebraic_data_type
³⁰http://en.wikipedia.org/wiki/Linked_list
³¹http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.Vector
³²http://en.wikipedia.org/wiki/Finger_tree
³³http://www.haskell.org/haskellwiki/Difference_list
³⁴http://en.wikipedia.org/wiki/Amortized_analysis
³⁵http://books.google.com/books/about/Purely_Functional_Data_Structures.html?id=SxPzSTcTalAC

http://en.wikipedia.org/wiki/Algebraic_data_type
http://en.wikipedia.org/wiki/Linked_list
http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.Vector
http://en.wikipedia.org/wiki/Finger_tree
http://www.haskell.org/haskellwiki/Difference_list
http://en.wikipedia.org/wiki/Amortized_analysis
http://books.google.com/books/about/Purely_Functional_Data_Structures.html?id=SxPzSTcTalAC
http://en.wikipedia.org/wiki/Algebraic_data_type
http://en.wikipedia.org/wiki/Linked_list
http://www.scala-lang.org/api/current/index.html#scala.collection.immutable.Vector
http://en.wikipedia.org/wiki/Finger_tree
http://www.haskell.org/haskellwiki/Difference_list
http://en.wikipedia.org/wiki/Amortized_analysis
http://books.google.com/books/about/Purely_Functional_Data_Structures.html?id=SxPzSTcTalAC
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data structures, both classic and new, from the perspective of functional programming. We highly
recommend picking up this book if you’re interested in data structures. The dissertation that the
book is based on is also available from Carnegie Mellon University’s website³⁶.

Rose trees

The tree structure that we introduce at the end of the chapter is called a Rose Tree³⁷. It is a nonempty
multi-way tree that contains data at the nodes rather than at the leaves.

The algebra of data types

The “algebraic” in algebraic data types means something specific. This is a reference to the fact that
such data types are composed of sums and products of other types. More specifically, data types
form a seminearring³⁸.

See the following links:

• The Algebra of Algebraic Data Types³⁹ by Chris Taylor.
• Species and Functors and Types, Oh My!⁴⁰ by Brent Yorgey
• Clowns to the left of me, jokers to the right⁴¹ by Conor McBride

Zippers

Since an algebraic data type is a type-level function involving sums and products, we can take the
derivative of such a function, yielding a data structure called a zipper⁴². The zipper for a given
structure is like the original structure, but with a movable “focus” or pointer into the structure. This
can be used to insert, remove, and modify elements under the focus.

For example, a list zipper⁴³ consists of one element under focus together with two lists: one
enumerating all the elements to the left of the focus, and another enumerating all the elements to
the right of the focus. The focus can me moved left or right (like a zipper on a piece of clothing) and
elements will move through the focus. The element under focus can then be removed or modified,
and we can insert a new element by consing onto the lists to its left or right.

³⁶http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
³⁷http://en.wikipedia.org/wiki/Rose_tree
³⁸http://en.wikipedia.org/wiki/Near-semiring
³⁹http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/
⁴⁰http://www.cis.upenn.edu/~byorgey/papers/species-pearl.pdf
⁴¹http://personal.cis.strath.ac.uk/~conor/Dissect.pdf
⁴²http://en.wikipedia.org/wiki/Zipper_%28data_structure%29
⁴³http://eed3si9n.com/learning-scalaz/Zipper.html

http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
http://en.wikipedia.org/wiki/Rose_tree
http://en.wikipedia.org/wiki/Near-semiring
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/
http://www.cis.upenn.edu/~byorgey/papers/species-pearl.pdf
http://personal.cis.strath.ac.uk/~conor/Dissect.pdf
http://en.wikipedia.org/wiki/Zipper_%28data_structure%29
http://eed3si9n.com/learning-scalaz/Zipper.html
http://www.cs.cmu.edu/~rwh/theses/okasaki.pdf
http://en.wikipedia.org/wiki/Rose_tree
http://en.wikipedia.org/wiki/Near-semiring
http://chris-taylor.github.io/blog/2013/02/10/the-algebra-of-algebraic-data-types/
http://www.cis.upenn.edu/~byorgey/papers/species-pearl.pdf
http://personal.cis.strath.ac.uk/~conor/Dissect.pdf
http://en.wikipedia.org/wiki/Zipper_%28data_structure%29
http://eed3si9n.com/learning-scalaz/Zipper.html
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Type inference

Scala’s type system is complicated by the presence of path-dependent types and subtyping. As a
result Scala has only very limited, local type inference.

Whereas other programming languages like Haskell or ML may have some species of Hindley-
Milner⁴⁴ type inference, Scala has what’s called “flow-based” inference. That is, type information
“flows” from arguments to results. Given the types of the arguments, Scala is able to infer the result
type of a function, unless that function is recursive. This also goes for values that are not functions,
which can be considered 0-argument functions for the purpose of this discussion.

We gain type inference benefits from grouping arguments into two argument lists, as in xs.foldRight(0)(_-
+ _). Type information flows from the first argument list to the second when inferring type
arguments to a function call. Note that no inference benefit can be gained from adding more than
two argument lists to a function. When inferring the type arguments to a function call, Scala’s typer
does not consult any argument lists beyond the first.

See the Scala Language Specification⁴⁵ for more information on Scala’s type inference. Specifically
sections 4.6.4 (Method Return Type Inference), 6.26.4 (Local Type Inference), and 8.3 (Type Parameter
Inference In Patterns).

Links

• Object-Oriented Programming Versus Abstract Data Types⁴⁶

FAQ for chapter 3

Why do you declare Nil as a case object instead of a case class within the
definition of our functional sealed trait List?

case object is more appropriate because Nil is a singleton. We can still use pattern matching in
this case. However, there won’t be a companion object with apply, unapply, etc. case class Nil

will actually cause an error because case classes require an explicit parameter list:

scala> case class Nil

<console>:1: error: case classes without a parameter list are not allowed;

use either case objects or case classes with an explicit `()' as a parameter list.

case class Nil

^

⁴⁴http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
⁴⁵http://www.scala-lang.org/docu/files/ScalaReference.pdf
⁴⁶http://www.cs.utexas.edu/users/wcook/papers/OOPvsADT/CookOOPvsADT90.pdf

http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.cs.utexas.edu/users/wcook/papers/OOPvsADT/CookOOPvsADT90.pdf
http://en.wikipedia.org/wiki/Hindley%E2%80%93Milner_type_system
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://www.cs.utexas.edu/users/wcook/papers/OOPvsADT/CookOOPvsADT90.pdf
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Notes on chapter 4: Handling errors without
exceptions

Partial and total functions

A partial function⁴⁷, as opposed to a total function, is a function that is not defined for some of
its inputs. That is, it’s not true for partial functions that every value of the input type maps to a
value of the output type. There are different approaches to representing this kind of function, but
in functional programming we commit to using only total functions. The approach we take in this
chapter is to augment the return type of partial functions to make it “the same size” as the input
type.

For example, the Option[T] type simply adds one data constructor, None, to the underlying type T.
That way we can have a total function of type X => Option[T] represent a partial function from X

to T. Wherever the function is not defined for a given X, we simply map that value to None in the
result type.

Turing completeness and the halting problem

Another possibility in languages that are Turing complete⁴⁸, which includes Scala, is that a function
may “hang” or “run forever” in an infinite loop. Functions that do this are also considered to be
partial. However, in a language like Scala we cannot prevent this kind of partiality nor can we
recover from it in the general case. It is equivalent to the halting problem⁴⁹.

Bottoms

A program that hangs (by running in an infinite loop) or crashes (by throwing an exception) is said
to “evaluate to bottom”. The term “bottom” (sometimes “falsum”) comes from logic, where it is used
to denote a contradiction. The Curry-Howard isomorphism⁵⁰ says that types are propositions, and
a program of a given type is a proof of that proposition. Since a non-terminating program can have
any type, we can say that it’s a proof of every proposition. This is exactly like the situation with
contradictions in logic–if you assume a contradiction, you can prove any proposition.

Total languages

Some programming languages are total languages⁵¹, and do not provide facilities for unbounded
recursion like Scala does. A program in such a language provably terminates, and there are no

⁴⁷http://en.wikipedia.org/wiki/Partial_function
⁴⁸http://en.wikipedia.org/wiki/Turing-complete
⁴⁹http://en.wikipedia.org/wiki/Halting_problem
⁵⁰http://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
⁵¹http://en.wikipedia.org/wiki/Total_functional_programming

http://en.wikipedia.org/wiki/Partial_function
http://en.wikipedia.org/wiki/Turing-complete
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
http://en.wikipedia.org/wiki/Total_functional_programming
http://en.wikipedia.org/wiki/Partial_function
http://en.wikipedia.org/wiki/Turing-complete
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Curry%E2%80%93Howard_correspondence
http://en.wikipedia.org/wiki/Total_functional_programming
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bottoms. The price of this is that such languages are not Turing complete, since there exist in theory
some programs that they cannot express, although the capabilities of total languages like Agda⁵²,
Coq⁵³, and Idris⁵⁴ are suggesting to us that Turing completeness may not be necessary for a large
majority of useful programs. Also see the paper Total Functional Programming⁵⁵.

Covariance and contravariance

In this chapter we briefly touch on the subject of variance in Scala. This is a feature of the subtyping
in Scala’s type system. Throughout this book we tend to largely ignore this feature since we find
that in practice it unnecessarily complicates Scala’s type system. We find that it’s not beneficial
to functional programming and can in fact often be a barrier to good API design. Outside of
the language specification⁵⁶, there is not much freely available documentation of how variance
works in Scala specifically, but for a general discussion see the Wikipedia article on covariance
and contravariance.⁵⁷

Variance in Option[+A]

Recall that the +A in Option[+A] declares that, for example, Option[Dog] is a subtype of Option[Animal]
(and that None, having type Option[Nothing], is a subtype of any Option[A]). But why are we forced
to accept a supertype of A (as indicated by the [B >: A]) in getOrElse and orElse?

Another way to state the +A annotation is that we’re telling Scala that in all contexts it’s safe to
convert this A to a supertype of A–Dog may be converted to Animal, for instance. Scala (correctly)
won’t let us provide this annotation unless all members of a type agree it’s safe to do this conversion.
Let’s see the contradiction if orElse had the following (simpler) signature:

trait Option[+A] {

def orElse(o: Option[A]): Option[A]

...

}

This is problematic–since orElse is a function accepting an Option[A] as an argument, this is a place
where we may only convert A to a subtype of A. Why? Like any function, orElse must be passed a
subtype of the type of argument it accepts–a Dog => R can be called with a Poodle or Dog, not an
arbitrary Animal. (We therefore say that such functions are contravariant in their argument type.)
But the fact that we have a member of Option[A] that only allows subtypes of A contradicts the +A in
Option[A], which says that in all contextswe can convert this A to any supertype of A. Contradictions

⁵²http://en.wikipedia.org/wiki/Agda_(programming_language)
⁵³http://coq.inria.fr/
⁵⁴http://www.idris-lang.org/
⁵⁵http://www.jucs.org/jucs_10_7/total_functional_programming/jucs_10_07_0751_0768_turner.pdf
⁵⁶http://www.scala-lang.org/docu/files/ScalaReference.pdf
⁵⁷http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29

http://en.wikipedia.org/wiki/Agda_(programming_language)
http://coq.inria.fr/
http://www.idris-lang.org/
http://www.jucs.org/jucs_10_7/total_functional_programming/jucs_10_07_0751_0768_turner.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
http://en.wikipedia.org/wiki/Agda_(programming_language)
http://coq.inria.fr/
http://www.idris-lang.org/
http://www.jucs.org/jucs_10_7/total_functional_programming/jucs_10_07_0751_0768_turner.pdf
http://www.scala-lang.org/docu/files/ScalaReference.pdf
http://en.wikipedia.org/wiki/Covariance_and_contravariance_%28computer_science%29
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like this will result in a compile error like "covariant type A occurs in contravariant position".
Scala must enforce that no such contradictions exist, or we could circumvent the type-checker and
easily write programs that gave a type error at runtime, in the form of a ClassCastException.

The more complicated signature fixes the contradiction by not mentioning A in any of the function
arguments:

def orElse[B >: A](o: Option[B]): Option[B]

Covariant and contravariant positions

A type is in covariant position (positive) if it is in the result type of a function, or more generally is
the type of a value that is produced.

A type is in contravariant position (negative) if it’s in the argument type of a function, or more
generally is the type of a value that is consumed.

For example, in def foo(a: A): B, the type A is in contravariant position and B is in covariant
position, all things being equal.

We can extend this reasoning to higher-order functions. In def foo(f: A => B): C, the type A => B

appears in negative (contravariant) position. This means the variance of the types A and B is flipped.
The type A appears in a negative position of a type in negative position. So just like the negation of
a negative is a positive, this means A is actually in covariant position. And since B is in the covariant
position of a type in contravariant position, it’s the negation of a positive, so B is in contravariant
position overall.

We can always count the position of a polymorphic type this way. Result types are positive, and
argument types are negative. The arguments to arguments are positive, arguments to arguments to
arguments are negative, and so on.

Notes on chapter 5: Strictness and laziness

Non-strictness vs laziness

The Haskell website⁵⁸ has a good explanation of the difference between non-strictness and laziness.

In short, “non-strict” just means “not strict”. There are many possible evaluation strategies⁵⁹ one
could employ when evaluating a program, and strict evaluation⁶⁰ is one of them. Non-strict
evaluation⁶¹ is a class of evaluation strategies, and lazy evaluation⁶² is one non-strict strategy (also
known as “call-by-need”).

⁵⁸http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
⁵⁹http://en.wikipedia.org/wiki/Evaluation_strategy
⁶⁰http://en.wikipedia.org/wiki/Strict_evaluation
⁶¹http://en.wikipedia.org/wiki/Non-strict_evaluation#Non-strict_evaluation
⁶²http://en.wikipedia.org/wiki/Lazy_evaluation

http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
http://en.wikipedia.org/wiki/Evaluation_strategy
http://en.wikipedia.org/wiki/Strict_evaluation
http://en.wikipedia.org/wiki/Non-strict_evaluation#Non-strict_evaluation
http://en.wikipedia.org/wiki/Non-strict_evaluation#Non-strict_evaluation
http://en.wikipedia.org/wiki/Lazy_evaluation
http://www.haskell.org/haskellwiki/Lazy_vs._non-strict
http://en.wikipedia.org/wiki/Evaluation_strategy
http://en.wikipedia.org/wiki/Strict_evaluation
http://en.wikipedia.org/wiki/Non-strict_evaluation#Non-strict_evaluation
http://en.wikipedia.org/wiki/Lazy_evaluation
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In Scala, non-strict arguments are sometimes called “by name” arguments, in reference to the fact
that the evaluation strategy Scala employs for those arguments is call-by-name⁶³. We can turn an
argument into call-by-need by caching it in a lazy val inside the function:

def pairIf[A](b: Boolean, x: => A) = {

lazy val y = x

if (b) Some((y, y)) else None

}

This function will evaluate x only once, or never if the boolean b is false. If we said (x, x) instead
of (y, y), it would evaluate x twice.

The chapter explains that when an expression does not terminate, it is said to evaluate to bottom. At
first glance this is counter intuitive because there is a natural tendency to think of infinity as having
no bottom. But the bottom to which the chapter refers is actually the bottom type⁶⁴. See Haskell’s
definition of bottom⁶⁵ for a more thorough description. Scala refers to it as Nothing⁶⁶, which is at
the bottom of the inheritance hierarchy.

Corecursion and codata

The Wikipedia article on corecursion⁶⁷ is a good starting point for understanding the concept.

The article on Coinduction⁶⁸ has some further links. Dan Piponi’s article Data and Codata⁶⁹ talks
about corecursion as “guarded” recursion.

Ralf Hinze’s paper Reasoning about Codata⁷⁰ brings equational reasoning to corecursive programs
by employing applicative functors. Hinze’s paper will be more comprehensible to readers who have
finished part 3 of our book.

Tying the knot

Non-strictness allows us to create cyclic streams such as:

val cyclic: Stream[Int] = 0 #:: 1 #:: cyclic

⁶³http://en.wikipedia.org/wiki/Call_by_name#Call_by_name
⁶⁴http://en.wikipedia.org/wiki/Bottom_type
⁶⁵http://www.haskell.org/haskellwiki/Bottom
⁶⁶http://www.scala-lang.org/api/current/#scala.runtime.Nothing\protect\char”0024\relax
⁶⁷http://en.wikipedia.org/wiki/Corecursion
⁶⁸http://en.wikipedia.org/wiki/Coinduction
⁶⁹http://blog.sigfpe.com/2007/07/data-and-codata.html
⁷⁰http://www.cs.ox.ac.uk/ralf.hinze/publications/CEFP09.pdf

http://en.wikipedia.org/wiki/Call_by_name#Call_by_name
http://en.wikipedia.org/wiki/Bottom_type
http://www.haskell.org/haskellwiki/Bottom
http://www.scala-lang.org/api/current/#scala.runtime.Nothing\protect \char "0024\relax 
http://en.wikipedia.org/wiki/Corecursion
http://en.wikipedia.org/wiki/Coinduction
http://blog.sigfpe.com/2007/07/data-and-codata.html
http://www.cs.ox.ac.uk/ralf.hinze/publications/CEFP09.pdf
http://en.wikipedia.org/wiki/Call_by_name#Call_by_name
http://en.wikipedia.org/wiki/Bottom_type
http://www.haskell.org/haskellwiki/Bottom
http://www.scala-lang.org/api/current/#scala.runtime.Nothing\protect \char "0024\relax 
http://en.wikipedia.org/wiki/Corecursion
http://en.wikipedia.org/wiki/Coinduction
http://blog.sigfpe.com/2007/07/data-and-codata.html
http://www.cs.ox.ac.uk/ralf.hinze/publications/CEFP09.pdf
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This may seem like it shouldn’t work. The stream is referencing itself in its own tail! But the trick
is that the #:: constructor is non-strict in its second argument. The evaluation of cyclic will stop
without expanding the expression 1 #:: cyclic. It’s not until somebody takes the tail of the tail
of cyclic that the recursive reference is expanded, and again it expands only one element at a time,
allowing for an infinite, cyclic stream.

Note that the cyclic stream is reusing its own structure. cyclic.tail.tail is not a new stream
that looks like cyclic. It really is the same object as cyclic in every sense:

scala> cyclic.tail.tail eq cyclic

res0: Boolean = true

This technique is sometimes called “Tying the Knot”. For more information see the Haskell.org
article⁷¹.

However, be careful of creating such structures using the Scala standard library’s Stream. They can
be quite fragile. The reason is that scala.Stream is is strict in the head element and it will also
memoize⁷² the computed contents, which can lead to memory leaks.

Stream.apply

Be careful using Stream.apply, both in the standard library and in the exercises: they are constructed
using repeated parameters, which are always strict. This means that e.g.

Stream({println("One"); 1}, {println("Two"); 2}, {println("Three"); 3})

will immediately print One, Two, Three. Although the Streamwill be constructed lazily, the contents
have already been evaluated.

For truly lazily constructed Streams you can always resort to #:: (which still evaluates the head
value strictly!) or nested cons(..,cons(..,..)) operators in the exercises.

Notes on chapter 6: Purely functional state

State in Scalaz

The Scalaz library⁷³ supplies a State data type⁷⁴ that is a specialization of a more general type
IndexedStateT⁷⁵, where State[S,A] = IndexedStateT[Id, S, S, A] and Id[A] = A.

⁷¹http://www.haskell.org/haskellwiki/Tying_the_Knot
⁷²http://en.wikipedia.org/wiki/Memoization
⁷³http://github.com/scalaz/scalaz
⁷⁴http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.package\protect\char”0024\relax\protect\char”0024\relaxState\protect\

char”0024\relax
⁷⁵http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.IndexedStateT

http://www.haskell.org/haskellwiki/Tying_the_Knot
http://www.haskell.org/haskellwiki/Tying_the_Knot
http://en.wikipedia.org/wiki/Memoization
http://github.com/scalaz/scalaz
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.package\protect \char "0024\relax \protect \char "0024\relax State\protect \char "0024\relax 
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.IndexedStateT
http://www.haskell.org/haskellwiki/Tying_the_Knot
http://en.wikipedia.org/wiki/Memoization
http://github.com/scalaz/scalaz
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.package\protect \char "0024\relax \protect \char "0024\relax State\protect \char "0024\relax 
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.package\protect \char "0024\relax \protect \char "0024\relax State\protect \char "0024\relax 
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.IndexedStateT
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You do not need to understand this more general type if you just want to use State[S,A]. But the
general type has two additional features:

1. The start state and end state of a state transition can have different types. That is, it’s not
necessarily a transition S => (S, A), but S1 => (S2, A). The ordinary State type is where
S1 and S2 are fixed to be the same type.

2. It is a monad transformer⁷⁶ (see chapter 12). The type of a state transition is not S => (S, A),
but S => F[(S, A)] for some monad⁷⁷ F (see chapter 11). The monad transformer allows us
to bind across F and State in one operation. The ordinary State type is where this monad is
fixed to be the identity monad Id.

Pseudorandom number generation

The Wikipedia article on pseudorandom number generators⁷⁸ is a good place to start for more
information about such generators. It also makes the distinction between random and pseudo-
random generation.

There’s also a good page on Linear congruential generators⁷⁹, including advantages and disadvan-
tages and links to several implementations in various languages.

Deterministic finite state automata

The State data type can be seen as a model of Mealy Machines⁸⁰ in the following way. Consider a
function f of a type like A => State[S, B]. It is a transition function in a Mealy machine where

• The type S is the set of states
• State[S, B]’s representation is a function of type S => (B, S). Then the argument to that
function is the initial state.

• The type A is the input alphabet of the machine.
• The type B is the output alphabet of the machine.

The function f itself is the transition function of the machine. If we expand A => State[S, B], it is
really A => S => (B, S) under the hood. If we uncurry that, it becomes (A, S) => (B, S) which
is identical to a transition function in a Mealy machine. Specifically, the output is determined both
by the state of type S and the input value of type A.

Contrast this with a Moore machine⁸¹, whose output is determined solely by the current state. A
Moore machine could be modeled by a data type like the following:

⁷⁶http://en.wikipedia.org/wiki/Monad_transformer
⁷⁷http://en.wikipedia.org/wiki/Monad_%28functional_programming%29
⁷⁸http://en.wikipedia.org/wiki/Pseudorandom_number_generator
⁷⁹http://en.wikipedia.org/wiki/Linear_congruential_generator
⁸⁰http://en.wikipedia.org/wiki/Mealy_machine
⁸¹http://en.wikipedia.org/wiki/Moore_machine

http://en.wikipedia.org/wiki/Monad_transformer
http://en.wikipedia.org/wiki/Monad_%28functional_programming%29
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Mealy_machine
http://en.wikipedia.org/wiki/Moore_machine
http://en.wikipedia.org/wiki/Monad_transformer
http://en.wikipedia.org/wiki/Monad_%28functional_programming%29
http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Linear_congruential_generator
http://en.wikipedia.org/wiki/Mealy_machine
http://en.wikipedia.org/wiki/Moore_machine
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case class Moore[S, I, A](t: (S, I) => S, g: S => A)

Together with an initial state s of type S. Here:

• S is the set of states.
• I is the input alphabet.
• A is the output alphabet.
• t is the transition function mapping the state and an input value to the next state.
• g is the output function mapping each state to the output alphabet.

As with Mealy machines, we could model the transition function and the output function as a single
function:

type Moore[S, I, A] = S => (I => S, A)

Since both the transition function t and the output function g take a value of type S, we can take
that value as a single argument and from it determine the transition function of type I => S as well
as the output value of type A at the same time.

Mealy and Moore machines are related in a way that is interesting to explore.

Lenses

If we specialize Moore so that the input and output types are the same, we get a pair of functions t:
(S, A) => S and g: S => A. We can view these as (respectively) a “getter” and a “setter” of A values
on the type S:

get: S => A

set: (S, A) => S

Imagine for example where S is Person and A is Name.

type Name = String

case class Person(name: Name, age: Int)

A function getName would have the type Person => Name, and setName would have the type
(Person, Name) => Person. In the latter case, given a Person and a Name, we can set the name

of the Person and get a new Person with the new name.

The getter and setter together form what’s called a lens. A lens “focuses” on a part of a larger
structure, and allows us to modify the value under focus. A simple model of lenses is:
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case class Lens[A, B](get: A => B, set: (A, B) => A)

Where A is the larger structure, and B is the part of that structure that is under focus.

Importantly, lenses compose. That is, if you have a Lens[A,B], and a Lens[B,C], you can get a
composite Lens[A,C] that focuses on a C of a B of an A.

Lenses are handy to use with the State data type. Given a State[S,A]. If we’re interested in looking
at or modifying a portion of the state, and the portion has type T, it can be useful to focus on a portion
of the state that we’re interested in using a Lens[S,T]. The getter and setter of a lens can be readily
converted to a State action:

def getS[S,A](l: Lens[S, A]): State[S,A] =

State(s => (l.get(s), s))

def setS[S,A](l: Lens[S, A], a: A): State[S,Unit] =

State(s => (l.set(s, a), ()))

We cannot, however, turn a State action into a Lens, for the same reason that we cannot convert a
Moore machine into a Mealy machine.

See the Scalaz library’s lenses⁸², the Monocle library for Scala⁸³, and the Lens library for Haskell⁸⁴,
for more information about how to take advantage of lenses.

Stack overflow issues in State

The State data type as represented in chapter 6 suffers from a problem with stack overflows for
long-running state machines. The problem is that flatMap contains a function call that is in tail
position, but this tail call is not eliminated on the JVM.

The solution is to use a trampoline. Chapter 13 gives a detailed explanation of this technique. See
also Rúnar’s paper Stackless Scala With Free Monads⁸⁵.

Using the trampolining data type TailRec from chapter 13, a stack-safe State data type could be
written as follows:

case class State[S,A](run: S => TailRec[(A, S)])

This is identical to the State data type we present in chapter 6, except that the result type of run
is TailRec[(S,A)] instead of just (S,A). See chapter 13 for a thorough discussion of TailRec. The
important part is that the result type of the State transition function needs to be a data type like
TailRec that gets run at a later time by a tail recursive trampoline function.

⁸²http://eed3si9n.com/learning-scalaz/Lens.html
⁸³https://github.com/julien-truffaut/Monocle
⁸⁴https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
⁸⁵http://blog.higher-order.com/assets/trampolines.pdf

http://eed3si9n.com/learning-scalaz/Lens.html
https://github.com/julien-truffaut/Monocle
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http://blog.higher-order.com/assets/trampolines.pdf
http://eed3si9n.com/learning-scalaz/Lens.html
https://github.com/julien-truffaut/Monocle
https://www.fpcomplete.com/school/to-infinity-and-beyond/pick-of-the-week/a-little-lens-starter-tutorial
http://blog.higher-order.com/assets/trampolines.pdf
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Notes on chapter 7: Purely functional parallelism

FP has a long history of using combinator libraries for expressing parallelism, and there are a lot
of variations of the general idea. The main design choices in this sort of library are around how
explicit to make the forking and joining of parallel computations. That is, should the API force the
programmer to be fully explicit about when parallel tasks are being forked off into a separate logical
thread, or should this be done automatically? And similarly, when waiting for the results of multiple
logical threads (say, for the implementation of map2), should the order of these joins be something
the programmer explicitly specifies or chosen by the framework?

The library we developed in this chapter sits somewhere in the middle–it is explicit about where
tasks are forked, but not when tasks are joined (notice that map2 picks the order it waits for the two
tasks whose results it is combining). The join order can be made more explicit. Simon Marlow, one
of the GHC Haskell⁸⁶ developers, discusses this in Parallel programming in Haskell with explicit
futures⁸⁷. Also see the full paper, Seq no more: Better Strategies for Parallel Haskell⁸⁸, which does a
nice job of explaining some of the history of approaches for parallelism in Haskell.

Note that because Scala is a strict-by-default language, being more explicit about the join order isn’t
necessarily as beneficial as in Haskell. That is, we can get away with reasoning about join order
much like we think about evaluation in normal strict function application.

This style of library isn’t particularly good at expressing pipeline parallelism that’s possible when
transforming streams of data. For instance, if we have a Stream[Int] of 10000 items, and we wish
to square each value, then compute a running sum of the squared values, there is a potential for
parallelism–as we are squaring values, we can be passing the squared values off to another consumer
that is emitting the running sum of the values it receives. We’ll be discussing stream processing and
pipeline parallelism more in part 4.

Notes about map fusion

We noted in this chapter that one of our laws for Par, sometimes called map fusion, can be used as
an optimization:

map(map(y)(g))(f) == map(y)(f compose g)

That is, rather than spawning a separate parallel computation to compute the second mapping, we
can fold it into the first mapping. We mentioned that our representation of Par doesn’t allow for
this, as it’s too ‘opaque’. If we make Par a proper data type and give it constructors that we can
pattern match on, then it’s easy to implement map fusion:

⁸⁶http://www.haskell.org/ghc/
⁸⁷http://ghcmutterings.wordpress.com/2010/08/20/parallel-programming-in-haskell-with-explicit-futures/
⁸⁸http://www.haskell.org/~simonmar/papers/strategies.pdf

http://www.haskell.org/ghc/
http://ghcmutterings.wordpress.com/2010/08/20/parallel-programming-in-haskell-with-explicit-futures/
http://ghcmutterings.wordpress.com/2010/08/20/parallel-programming-in-haskell-with-explicit-futures/
http://www.haskell.org/~simonmar/papers/strategies.pdf
http://www.haskell.org/ghc/
http://ghcmutterings.wordpress.com/2010/08/20/parallel-programming-in-haskell-with-explicit-futures/
http://www.haskell.org/~simonmar/papers/strategies.pdf
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trait Par[+A] {

def map[B](f: A => B): Par[B] = this match {

case MapPar(p, g) => MapPar(p, g andThen f)

case _ => MapPar(

}

case class MapPar[A,+B](par: Par[A], f: A => B) extends Par[B]

Baking ad hoc optimization rules like this into our data type works, but it can sometimes get
unwieldy, and it’s not very modular (we don’t get to reuse code if there’s some other data type
needing similar optimizations). There are various ways of factoring out these sorts of optimizations
so our core data type (be it Par or some other type) stays clean, and the optimization is handled as a
separate concern. Edward Kmett has a nice blog series discussing this approach⁸⁹. Before embarking
on that series you’ll need to be familiar with the content in part 3 of this book, and you should read
the Haskell appendix as well.

Notes on chapter 8: Property-based testing

The style of combinator library for testing we developed in this chapter was introduced in a 2000
paper by Koen Claessen and John Hughes, QuickCheck: A Lightweight Tool for Random Testing
of Haskell Programs⁹⁰ (PDF). In that paper, they presented a Haskell library, called QuickCheck⁹¹,
which became quite popular in the FP world and has inspired similar libraries in other languages,
including ScalaCheck⁹². Many programmers who adopt this style of testing find it to be extraordi-
narily effective (see, for instance, this experience report⁹³ on Tom Moertel’s blog⁹⁴).

The wikipedia page on QuickCheck⁹⁵ and the Haskell wiki page⁹⁶ are good places to start if
you’re interested in learning more about these sorts of libraries. QuickCheck sparked a number of
variations, including the Haskell library SmallCheck⁹⁷, which is focused on exhaustive enumeration.

Although property-based testing works quite well for testing pure functions, it can also be used for
testing imperative code. The general idea is to generate lists of instructions, which are then fed to an
interpreter of these actions. We then check that the pre and post-conditions are as expected. Here’s
a simple example of testing the mutable stack implementation from Scala’s standard library (API
docs⁹⁸):

⁸⁹http://comonad.com/reader/2011/free-monads-for-less/
⁹⁰http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
⁹¹http://en.wikipedia.org/wiki/QuickCheck
⁹²https://github.com/rickynils/scalacheck/wiki/User-Guide
⁹³http://blog.moertel.com/pages/seven-lessons-from-the-icfp-programming-contest
⁹⁴http://blog.moertel.com/
⁹⁵http://en.wikipedia.org/wiki/QuickCheck
⁹⁶http://www.haskell.org/haskellwiki/Introduction_to_QuickCheck
⁹⁷https://github.com/feuerbach/smallcheck
⁹⁸http://www.scala-lang.org/api/current/scala/collection/mutable/ArrayStack.html

http://comonad.com/reader/2011/free-monads-for-less/
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
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http://en.wikipedia.org/wiki/QuickCheck
https://github.com/rickynils/scalacheck/wiki/User-Guide
http://blog.moertel.com/pages/seven-lessons-from-the-icfp-programming-contest
http://blog.moertel.com/
http://en.wikipedia.org/wiki/QuickCheck
http://www.haskell.org/haskellwiki/Introduction_to_QuickCheck
https://github.com/feuerbach/smallcheck
http://www.scala-lang.org/api/current/scala/collection/mutable/ArrayStack.html
http://www.scala-lang.org/api/current/scala/collection/mutable/ArrayStack.html
http://comonad.com/reader/2011/free-monads-for-less/
http://www.eecs.northwestern.edu/~robby/courses/395-495-2009-fall/quick.pdf
http://en.wikipedia.org/wiki/QuickCheck
https://github.com/rickynils/scalacheck/wiki/User-Guide
http://blog.moertel.com/pages/seven-lessons-from-the-icfp-programming-contest
http://blog.moertel.com/
http://en.wikipedia.org/wiki/QuickCheck
http://www.haskell.org/haskellwiki/Introduction_to_QuickCheck
https://github.com/feuerbach/smallcheck
http://www.scala-lang.org/api/current/scala/collection/mutable/ArrayStack.html
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forAll(Gen.listOf(Gen.choose(1,10))) { l =>

val buf = new collection.mutable.ArrayStack[Int]

val beforeSize = buf.size

l.foreach(buf.push)

buf.beforeSize == 0 && buf.size == l.size

}

In this case, the “interpreter” is the push method on ArrayStack, which modifies the stack in place,
and the “instructions” are simply the integers from the input list. But the basic idea can be extended
to testing richer interfaces–for instance, we could generate instructions that could either push or pop
elements from an ArrayStack (perhaps represented as a List[Option[Int]]), and write a property
that sequences of push and pop preserve the invariants of ArrayStack (for instance, the final size
of the stack should be the number of push calls minus the number of pop calls). Care must be
taken to craft generators that produce valid sequences of instructions (for instance, pop without a
corresponding prior push is not a valid input).

Similar ideas have been used for testing thread safety of concurrent programs. (See Finding Race
Conditions in Erlang with QuickCheck and PULSE⁹⁹ (PDF)) The key insight here is that thread-
safe code does not allow the nondeterminism of thread scheduling to be observable. That is, for
any partial order of instructions run concurrently, we ought to able to find some single-threaded
linear sequence of these instructions with the same observable behavior (this criteria is often called
linearizability). For instance, if our ArrayStack were thread-safe, we would expect that if 2 push

operations were performed sequentially, followed by two pop operations and two push operations
performed concurrently, this should yield the same result as some deterministic linear sequence of
these push and pop operations). There are some subtleties and interesting questions about how to
model this and how to report andminimize failing test cases. In particular, doing it the “obvious” way
ends up being intractable due to having to search through a combinatorial number of interleavings to
find one that satisfies the observation. The Erlang paper linked above has more details, in particular
see section 4. You may be interested to explore how to incorporate these ideas into the library we
developed, possibly building on the parallelism library we wrote last chapter.

Lastly, we mention that one design goal of some libraries in this style is to avoid having to explicitly
construct generators. The QuickCheck library makes use of a Haskell type class to provide instances
of Gen “automatically”, and this idea has also been borrowed by ScalaCheck¹⁰⁰. This can certainly
be convenient, especially for simple examples, though we often find that explicit generators are
necessary to capture all the interesting constraints on the shape or form of the inputs to a function.

⁹⁹http://www.protest-project.eu/upload/paper/icfp070-claessen.pdf
¹⁰⁰https://github.com/rickynils/scalacheck/wiki/User-Guide

http://www.protest-project.eu/upload/paper/icfp070-claessen.pdf
http://www.protest-project.eu/upload/paper/icfp070-claessen.pdf
https://github.com/rickynils/scalacheck/wiki/User-Guide
http://www.protest-project.eu/upload/paper/icfp070-claessen.pdf
https://github.com/rickynils/scalacheck/wiki/User-Guide
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Notes on chapter 9: Parser combinators

Different approaches to functional design

There are many different approaches to functional design. The approach we take in this chapter
we are calling “algebraic design” to emphasize the fact that we are mainly concerned with the
abstract data types and laws of our API. The actual representation is a later concern, and we choose
a representation that best facilitates our algebra. This perspective is common to Category Theory¹⁰¹,
where mathematical objects (or a type in the more concretely programming-related case) are defined
solely by their relationship to other objects, not their “internal” structure.

Conal Elliott¹⁰² advocates for an approach he calls denotational design¹⁰³, also see this nice
exposition by Luke Palmer¹⁰⁴. In this style of design, the choice of a precise meaning or denotation
(see denotational semantics¹⁰⁵) for the data types in our library guides the design process. This
denotation is not (necessarily) similar to the actual concrete representation we ultimately select
when implementing our library–that happens later. The denotation is instead a hopefully simple,
precise mathematical object that lets us understand what the data types of our library and their
various operationsmean (in terms of how they transform these denotations). In this style of design,
we begin with some initial idea of a denotation for our data type, and refine this denotation in
response to the operations we wish to support.

There is no “right” answer in approaches to the design of software, and the higher your perspective,
the more the lines between different approaches blur.

Design issues in parser combinator libraries

Parser combinator libraries are very common in the FP world, and there are a lot of different
variations. A few of the key design issues:

Error reporting: Generating good error messages is a delicate problem, and is easy to get wrong. The
overall error-reporting strategy developed in this chapter is most similar to Parsec¹⁰⁶, a widely used
parsing library in Haskell, though Parsec does not support the nested error messages we developed
here. A key factor for good error reporting is having a clear model for when backtracking is allowed
to occur and giving the programmer the ability to control this when specifying the grammar. We
chose to adopt Parsec’s convention that all parsers commit by default if they consume at least one
character, and that the attempt combinator “undoes” this commit. Another choice is to not have
parsers commit by default, and introduce a separate commit combinator (which is still “undone” by
attempt). This has the same expressiveness but we find it is not usually the best default since most

¹⁰¹http://en.wikipedia.org/wiki/Category_theory
¹⁰²http://conal.net/
¹⁰³http://conal.net/papers/type-class-morphisms
¹⁰⁴http://lukepalmer.wordpress.com/2008/07/18/semantic-design/
¹⁰⁵http://en.wikipedia.org/wiki/Denotational_semantics
¹⁰⁶http://legacy.cs.uu.nl/daan/parsec.html

http://en.wikipedia.org/wiki/Category_theory
http://conal.net/
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http://en.wikipedia.org/wiki/Denotational_semantics
http://legacy.cs.uu.nl/daan/parsec.html
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http://conal.net/
http://conal.net/papers/type-class-morphisms
http://lukepalmer.wordpress.com/2008/07/18/semantic-design/
http://en.wikipedia.org/wiki/Denotational_semantics
http://legacy.cs.uu.nl/daan/parsec.html
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grammars require little lookahead. Interestingly, the grammar ends up looking almost the same with
the introduction of an explicit commit: the leaf-level token parser is usually wrapped in commit, and
higher levels of the grammar that require more lookahead use attempt.

Input handling: Is the input type fixed to be String or can parsers be polymorphic over any sequence
of tokens? The library developed in this chapter chose String for simplicity and speed. Separate
tokenizers are not as commonly used with parser combinators–the main reason to use a separate
tokenizer would be for speed, which is usually addressed by building a few fast low-level primitive
like regex (which checks whether a regular expression matches a prefix of the input string).

Having the input type be an arbitrary Seq[A] results in a library that could in principle be used for
other sorts of computations (for instance, we can “parse” a sum from a Seq[Int]). There are usually
better ways of doing these other sorts of tasks (see the discussion of stream processing in part 4 of
the book) and we have found that there isn’t much advantage in generalizing the library we have
here to other input types.

We can define a similar set of combinators for parsing binary formats. Binary formats rarely have to
deal with lookahead, ambiguity, and backtracking, and have simpler error reporting needs, so often
a more specialized binary parsing library is sufficient. Some examples of binary parsing libraries
are Data.Binary¹⁰⁷ in Haskell, which has inspired similar libraries in other languages, for instance
scodec¹⁰⁸ in Scala.

You may be interested to explore generalizing or adapting the library we wrote enough to handle
binary parsing as well (to get good performance, you may want to try using the specialized
annotation¹⁰⁹ to avoid the overhead of boxing and unboxing that would otherwise occur).

Streaming parsing and push vs. pull: It is possible to make a parser combinator library that can
operate on huge inputs, larger than what is possible or desirable to load fully into memory. Related
to this is is the ability to produce results in a streaming fashion–for instance, as the raw bytes of
an HTTP request are being read, the parse result is being constructed. The two general approaches
here are to allow the parser to pull more input from its input source, and inverting control and
pushing chunks of input to our parsers (this is the approach taken by the popular Haskell library
attoparsec¹¹⁰), which may report they are finished, failed, or requiring more input after each chunk.
We will discuss this more in part 4 when discussing stream processing.

Handling of ambiguity and left-recursion: The parsers developed in this chapter scan input from left
to right and use a left-biased or combinator which selects the “leftmost” parse if the grammar is
ambiguous–these are called LL parsers¹¹¹. This is a design choice. There are other ways to handle
ambiguity in the grammar–in GLR parsing¹¹², roughly, the or combinator explores both branches
simultaneously and the parser can return multiple results if the input is ambiguous. (See Daniel

¹⁰⁷http://code.haskell.org/binary/
¹⁰⁸https://github.com/scodec/scodec
¹⁰⁹http://www.scala-notes.org/2011/04/specializing-for-primitive-types/
¹¹⁰http://hackage.haskell.org/packages/archive/attoparsec/0.10.2.0/doc/html/Data-Attoparsec-ByteString.html
¹¹¹http://en.wikipedia.org/wiki/LL_parser
¹¹²http://en.wikipedia.org/wiki/GLR_parser
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http://hackage.haskell.org/packages/archive/attoparsec/0.10.2.0/doc/html/Data-Attoparsec-ByteString.html
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Spiewak’s series on GLR parsing¹¹³ also his paper¹¹⁴) GLR parsing is more complicated, there are
difficulties around supporting good error messages, and we generally find that its extra capabilities
are not needed in most parsing situations.

Related to this, the parser combinators developed here cannot directly handle left-recursion, for
instance:

def expr = (int or double) or (

expr ** "+" ** expr ) or (

"(" ** expr ** ")" )

This will fail with a stack overflow error, since we will keep recursing into expr. The invariant that
prevents this is that all branches of a parser must consume at least one character before recursing.
In this example, we could do this by simply factoring the grammar a bit differently:

def leaf = int or double or ("(" ** expr ** ")")

def expr = leaf.sep("+")

Where sep is a combinator that parses a list of elements, ignoring some delimiter (“separator”) that
comes between each element (it can be implemented in terms of many). This same basic approach
can be used to handle operator precedence–for instance, if leaf were a parser that included binary
expressions involving multiplication, this would make the precedence of multiplication higher than
that of addition. Of course, it is possible to write combinators to abstract out patterns like this.
It is also possible to write a monolithic combinator that uses a more efficient (but specialized)
algorithm¹¹⁵ to build operator parsers.

Other interesting areas to explore related to parsing

• Monoidal and incremental parsing: This deals with the much harder problem of being able to
incrementally reparse input in the presences of inserts and deletes, like what might be nice to
support in a text-editor or IDE. See Edward Kmett’s articles on this¹¹⁶ as a starting point.

• Purely applicative parsers: If we stopped before adding flatMap, we would still have a useful
library–context-sensitivity is not often required, and there are some interesting tricks that can
be played here. See this stack overflow answer¹¹⁷ for a discussion and links to more reading.

¹¹³http://www.codecommit.com/blog/scala/unveiling-the-mysteries-of-gll-part-1
¹¹⁴http://www.cs.uwm.edu/~dspiewak/papers/generalized-parser-combinators.pdf
¹¹⁵http://en.wikipedia.org/wiki/Shunting-yard_algorithm
¹¹⁶http://comonad.com/reader/2009/iteratees-parsec-and-monoid/
¹¹⁷http://stackoverflow.com/questions/7861903/what-are-the-benefits-of-applicative-parsing-over-monadic-parsing
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Single pass parsing

Lastly, we mentioned that the JSON parser we wrote in this chapter was rather dumb in that it only
constructed a parse tree. This is unfortunate–we will typically then have to traverse this parse tree to
extract some meaningful type from the parse tree after the fact. We could instead build up whatever
type we wish as we go. The general idea is to parameterize our grammar on functions that describe
what to do at each level of the parse tree:

def array[A,B](value: Parser[A])(f: List[A] => B): Parser[B] =

"[" *> value.sep(",").map(f) <* "]"

// `*>` ignores the left parse result, in this case the `"["`,

// and `<*` ignores the right parse result, in this case the `"]"`.

This parses a JSON array, but rather than building a JArray, immediately converts the result to B

using the given function, where B might be some more meaningful type. The same strategy can be
applied for the rest of the grammar.

Notes on chapter 10: Monoids

Monoids in category theory

In category theory¹¹⁸, a monoid¹¹⁹ is a category¹²⁰ with one object.

A category is a purely algebraic structure consisting of “objects” and “arrows” between them, much
like a directed graph with nodes and edges between them. A category will have objects like A, B, C,
etc. and arrows between objects. Importantly, arrows compose. Given an arrow f from A to B, and
another arrow g from B to C, their composition is an arrow from A to C. There is also an identity
arrow from every object to itself.

For example, Scala forms a category where the objects are Scala types and the arrows are Scala
functions. There’s another category where the objects are Scala types and the arrows are subtype
relationships.

Arrows in a category compose according to certain laws. Composition has to obey an identity law
such that any arrow f composed with the identity arrow is just f. That is, the identity arrow is an
identity with regard to composition. Composition also has to obey an associative law. Denoting the
composition operator as *, the associative law says that (f * g) * h should be the same as f * (g

* h). That is, it doesn’t matter whether we compose on the left or the right first. This should remind
you of the monoid laws!

¹¹⁸http://en.wikipedia.org/wiki/Category_theory
¹¹⁹http://en.wikipedia.org/wiki/Monoid_(category_theory)
¹²⁰http://en.wikipedia.org/wiki/Category_(mathematics)
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A Monoid[M], then, is just a category where the only object is the type M, and the arrows are the
values of type M. The identity arrow is the identity element of the monoid, and arrow composition
is the monoid’s binary operation.

It can be a little difficult to see how the values of a type like Int can be arrows. Take for instance
the monoid formed by integers with addition. Then the integer 5, say, can be seen as an operation
that adds 5 to another integer. And 0 can be seen as an operation that leaves an integer alone.

See Rúnar’s article On Monoids¹²¹ for some of the deeper connections.

The canonicity of a Scala monoid

In Scala, it’s possible to have multiple Monoid instances associated with a type. For example, for the
type Int, we can have a Monoid[Int] that uses addition with 0, and another Monoid[Int] that uses
multiplication with 1.

This can lead to certain problems since we cannot count on a Monoid instance being canonical in
any way. To illustrate this problem, consider a “suspended” computation like the following:

case class Suspended(acc: Int, m: Monoid[Int], remaining: List[Int])

This represents an addition that is “in flight” in some sense. It’s an accumulated value so far,
represented by acc, a monoid m that was used to accumulate acc, and a list of remaining elements
to add to the accumulation using the monoid.

Now, if we have two values of type Suspended, how would we add them together? We have no idea
whether the two monoids are the same. And when it comes time to add the two acc values, which
monoid should we use? There’s no way of inspecting the monoids (since they are just functions) to
see if they are equivalent. So we have to make an arbitrary guess, or just give up.

Monoids in Haskell¹²² work a bit differently. There can only ever be one Monoid instance for a given
type in Haskell. This is because Monoid is a type class¹²³. Instances of Haskell type classes are not
first-class values like they are in Scala. They are implicitly passed and never explicitly referenced.
They do not have types per se, but appear as constraints on types¹²⁴.

In Haskell, there is only one abstract monoidal operation and one zero. They are both polymorphic,
and their signatures are:

mappend :: Monoid m => m -> m -> m

mempty :: Monoid m => m

¹²¹http://apocalisp.wordpress.com/2010/06/14/on-monoids/
¹²²http://www.haskell.org/haskellwiki/Monoid
¹²³https://www.fpcomplete.com/school/starting-with-haskell/introduction-to-haskell/5-type-classes
¹²⁴http://www.haskell.org/tutorial/classes.html
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http://www.haskell.org/tutorial/classes.html
http://apocalisp.wordpress.com/2010/06/14/on-monoids/
http://www.haskell.org/haskellwiki/Monoid
https://www.fpcomplete.com/school/starting-with-haskell/introduction-to-haskell/5-type-classes
http://www.haskell.org/tutorial/classes.html
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This reads: “for any type m, if m is a monoid, mappend takes an m and another m and returns an m”,
and “mempty is a value of any type m, given that m is a monoid.”

How do we then represent types that are monoids in more than one way, for example Int with
addition as one monoid and multiplication as another? The answer is that we make each monoid a
newtype¹²⁵:

newtype Product = Product { getProduct :: Int }

newtype Sum = Sum { getSum :: Int }

A newtype in Haskell is a lot like a case class in Scala, except that newtypes can only have exactly
one field, and they have no runtime representation other than the underlying type of that field. It’s
a purely type-level construct, a kind of tagged type.

Using this mechanism, a product and a sum are actually different types, even though the underlying
value is an Int in both cases. This way every type has its own canonical monoid, and values
accumulated in one monoid can never be confused with values accumulated in another. But we
can always convert between them if we need to.

The Scalaz library¹²⁶ takes the same approach, where there is only one canonical monoid per
type. However, since Scala doesn’t have type constraints, the canonicity of monoids is more of a
convention than something enforced by the type system. And since Scala doesn’t have newtypes,
we use phantom types¹²⁷ to add tags to the underlying types. This is done with scalaz.Tag¹²⁸, which
uses a couple of type aliases:

type Tagged[A] = AnyRef { type T = A }

type @@[A,B] = A with Tagged[B]

Now the type Int @@ Product, for example, is just the type Int, but “tagged” with Product to make
it explicit that Monoid[Int @@ Product] is distinct from Monoid[Int @@ Sum]. The types Product
and Sum themselves are just empty traits with no members whatsoever.

Tim Perrett wrote a blog post¹²⁹ detailing how tagged types work in Scalaz.

The great benefit of canonicity is that Scalaz can build a monoid instance for you just from the
type. For example, if you have a Map[Int, Map[String, (Int, Boolean)]], Scalaz can figure out
a canonical composite monoid for this type:

¹²⁵http://www.haskell.org/haskellwiki/Newtype
¹²⁶https://github.com/scalaz/scalaz
¹²⁷http://www.haskell.org/haskellwiki/Phantom_type
¹²⁸http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Tags\protect\char”0024\relax
¹²⁹http://timperrett.com/2012/06/15/unboxed-new-types-within-scalaz7/

http://www.haskell.org/haskellwiki/Newtype
https://github.com/scalaz/scalaz
http://www.haskell.org/haskellwiki/Phantom_type
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Tags\protect \char "0024\relax 
http://timperrett.com/2012/06/15/unboxed-new-types-within-scalaz7/
http://www.haskell.org/haskellwiki/Newtype
https://github.com/scalaz/scalaz
http://www.haskell.org/haskellwiki/Phantom_type
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Tags\protect \char "0024\relax 
http://timperrett.com/2012/06/15/unboxed-new-types-within-scalaz7/
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import scalaz._

import Scalaz._

import Tags._

val x = Map(1 -> Map("Foo" -> (1, Conjunction(false))))

val y = Map(1 -> Map("Foo" -> (2, Conjunction(true))))

val z = x |+| y

The value of z will be Map(1 -> Map("Foo" -> (3, Conjunction(false)))). Here, Conjunction
is a “newtype” for Boolean to indicate that we want the “conjunction” monoid (Boolean with && as
the op and true as the identity element). There’s a corresponding Disjunction for || with false.
At the present time, Scalaz’s default monoid for Int is addition, which is why we get 3 in z.

The syntax x |+| y works for any monoid. It works because there is an implicit class on the
Scalaz._ import. Be warned though, the Scalaz._ import brings a lot of implicits into scope. You
can import just the monoid syntax with import scalaz.syntax.monoid._.

Monoid coproducts

If A and B are monoids, then (A,B) is a monoid, called their product. But what about coproducts? Is
there a composite monoid where we can have either an A or a B? Yes there is. See Rúnar’s blog post
on monoid coproducts¹³⁰ for the details.

Links

On Monoids, by Rúnar¹³¹ – Provides some deeper insight on the relationship between monoids and
lists, and looks at them from a category theory perspective.

Notes on chapter 11: Monads

Monad laws through join

There is a formulation of the monad laws that we don’t discuss in the chapter. We talk about the
associative law in terms of flatMap and compose (Kleisli composition), but we can also state it in
terms of join:

join(join(x)) == join(map(x)(join))

¹³⁰http://blog.higher-order.com/blog/2014/03/19/monoid-morphisms-products-coproducts/
¹³¹http://apocalisp.wordpress.com/2010/06/14/on-monoids/

http://blog.higher-order.com/blog/2014/03/19/monoid-morphisms-products-coproducts/
http://blog.higher-order.com/blog/2014/03/19/monoid-morphisms-products-coproducts/
http://apocalisp.wordpress.com/2010/06/14/on-monoids/
http://blog.higher-order.com/blog/2014/03/19/monoid-morphisms-products-coproducts/
http://apocalisp.wordpress.com/2010/06/14/on-monoids/
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That is, if we have a value x of type F[F[F[A]]], we can join twice to get F[A], or we can map join

over the outer F and then join the result of that.

This is saying that in “flattening” F[F[F[A]]] to F[A], it should not matter whether we first join the
two “inner” Fs or the two “outer” Fs. This is easy to see with the List monad. If we have a List of
Lists of Lists, like this…

val x: List[List[List[Int]]] =

List(List(List(1,2), List(3,4)), List(List(5,6), List(7,8)))

…it should not matter whether we flatten the inner lists or the outer lists first:

scala> val y1 = x.flatten

y1: List[List[Int]] = List(List(1, 2), List(3, 4), List(5, 6), List(7, 8))

scala> val y2 = x.map(_.flatten)

y2: List[List[Int]] = List(List(1, 2, 3, 4), List(5, 6, 7, 8))

scala> y1.flatten

res0: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8)

scala> y2.flatten

res1: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8)

This is the same as saying that in the expression ((1 + 2) + (3 + 4)) + ((5 + 6) + (7 + 8)), it
doesn’t matter whether we remove the inner brackets first to get (1 + 2 + 3 + 4) + (5 + 6 + 7

+ 8) or the outer brackets first to get (1 + 2) + (3 + 4) + (5 + 6) + (7 + 8). In both cases we
end up with 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8. The reason it doesn’t matter is that + is associative.
So then it’s easy to see how the monad law is an associative law.

The identity laws in terms of join are similarly simple:

join(unit(x)) == x // left identity

join(map(x)(unit)) == x // right identity

In terms of the list monad as above, the identity laws are saying that we can add brackets either on
the inside or the outside. Whichever we do, join will behave the same way:
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scala> val x = List(1,2,3)

x: List[Int] = List(1, 2, 3)

scala> List(x).flatten

res0: List[Int] = List(1, 2, 3)

scala> x.map(List(_)).flatten

res1: List[Int] = List(1, 2, 3)

Monads in Category Theory

In Category Theory¹³², a Monad¹³³ is a functor¹³⁴ equipped with a pair of natural transformations¹³⁵
satisfying the laws of associativity¹³⁶ and identity¹³⁷.

What does this mean? If we restrict ourselves to the category of Scala types (with Scala types as the
objects and functions as the arrows), we can state this in Scala terms.

A Functor is just a type constructor for which map can be implemented:

trait Functor[F[_]] {

def map[A,B](fa: F[A])(f: A => B): F[B]

}

A natural transformation from a functor F to a functor G is just a polymorphic function:

trait Transform[F[_], G[_]] {

def apply[A](fa: F[A]): G[A]

}

The natural transformations that form a monad for F are unit and join:

¹³²http://en.wikipedia.org/wiki/Category_theory
¹³³http://en.wikipedia.org/wiki/Monad_%28category_theory%29
¹³⁴http://en.wikipedia.org/wiki/Functor
¹³⁵http://en.wikipedia.org/wiki/Natural_transformation
¹³⁶http://en.wikipedia.org/wiki/Associativity
¹³⁷http://en.wikipedia.org/wiki/Identity_%28mathematics%29

http://en.wikipedia.org/wiki/Category_theory
http://en.wikipedia.org/wiki/Monad_%28category_theory%29
http://en.wikipedia.org/wiki/Functor
http://en.wikipedia.org/wiki/Natural_transformation
http://en.wikipedia.org/wiki/Associativity
http://en.wikipedia.org/wiki/Identity_%28mathematics%29
http://en.wikipedia.org/wiki/Category_theory
http://en.wikipedia.org/wiki/Monad_%28category_theory%29
http://en.wikipedia.org/wiki/Functor
http://en.wikipedia.org/wiki/Natural_transformation
http://en.wikipedia.org/wiki/Associativity
http://en.wikipedia.org/wiki/Identity_%28mathematics%29
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type Id[A] = A

def unit[F](implicit F: Monad[F]) = new Transform[Id, F] {

def apply(a: A): F[A] = F.unit(a)

}

def join[F](implicit F: Monad[F]) = new Transform[({type f[x] = F[F[x]]})#f, F] {

def apply(ffa: F[F[A]]): F[A] = F.join(ffa)

}

Monads and monoids

Monoids and monads are connected in various ways in category theory.

The monad for monoids

The Listmonad can be seen as a theory about monoids. Specifically, the _.flatten (monadic join)
and List(_) (monadic unit) functions witness that we can add and remove parentheses in a monoid
expression. That is, the parenthesization of an expression like 1 + 2 + 3 + 4 doesn’t matter. The
monad associativity lawmeans that we can remove parentheses in any order we like, and the identity
law means we can add them wherever we want.

See Rúnar’s article, More on monoids and monads¹³⁸ for more information about this connection.

Kleisli categories

Both monoids and monads form categories. In fact, we can see a category as a generalized monoid.
Observe that with a monoid M, we can view each element of the monoid as a function of type M =>

M. For example, in the Int monoid with addition, these elements are (_ + 0), (_ + 1), (_ + (-1)),
etc. Then the composition of these functions is the operation of the monoid. We can generalize this
notion to consider not just the type M, but all types (A, B, C, etc.) and functions not just of type M =>

M, but A => B for any types A and B. Then ordinary function composition is an associative operation,
with an identity element which is the identity function that just returns its argument. This more
general notion does not form a monoid, but a category which is more general. Specifically, it’s the
category of Scala types with function composition. Even more generally, whenever we have arrows
(a generalized notion of functions) whose composition is associative and has an identity element,
we have a category.

A monad F can be described by what’s called a Kleisli category¹³⁹. The objects of this category are
the ordinary Scala types, but the arrows are Kleisli arrows. That is, every arrow in this category is
not of the general form A => B, but of the more specific form A => F[B]. The composition of these
arrows is Kleisli composition (given by the compose combinator in the chapter) and the identity for
Kleisli composition is monadic unit. Every monad forms a Kleisli category in this way.

¹³⁸http://apocalisp.wordpress.com/2010/07/21/more-on-monoids-and-monads/
¹³⁹http://en.wikipedia.org/wiki/Kleisli_category

http://apocalisp.wordpress.com/2010/07/21/more-on-monoids-and-monads/
http://en.wikipedia.org/wiki/Kleisli_category
http://apocalisp.wordpress.com/2010/07/21/more-on-monoids-and-monads/
http://en.wikipedia.org/wiki/Kleisli_category
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A monad is a monoid in a category of endofunctors

A monad is also a kind of monoid. If we think of a type like (M, M) => M as M² => M (taking 2
Ms or the product of M with itself), and M as 1 => M (where 1 is the Unit type), then we can think
of a type like F[F[A]] => F[A] as F²[A] => F[A] or just F² ∼> F (where ∼> denotes a natural
transformation¹⁴⁰) and A => F[A] as 1[A] => F[A] (where 1 is the identity functor) or just 1 ∼> F:

type zero/unit op/join

Monoid[M] 1 => M M² => M

Monad[F] 1 ∼> F F² ∼> F

It’s now clear that these are the same kind of thing, except Monoid[M] is operating in a category
where the objects are Scala types and the arrows are Scala functions, and Monad[F] is operating in
a category where the objects are Scala functors and the arrows are natural transformations.

See this StackOverflow question and its answers: http://stackoverflow.com/questions/3870088/a-
monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem¹⁴¹.

Reader monad

At the end of the chapter we have an exercise for the reader to implement the following monad:

case class Reader[R, A](run: R => A)

object Reader {

def readerMonad[R] = new Monad[({type f[x] = Reader[R,x]})#f] {

def unit[A](a: => A): Reader[R,A] = ???

def flatMap[A,B](st: Reader[R,A])(f: A => Reader[R,B]): Reader[R,B] = ???

}

}

This is the reader monad¹⁴². It is called that because it has the ability to read a value of type R. In
addition to the operations common to all monads (flatMap, join, map, unit, etc), it has a primitive
operation, read:

def read[R]: Reader[R, R] = Reader(r => r)

Note that this is just the identity function!

In the Scalaz library, this operation is called ask¹⁴³ and is generalized to any reader-like structure
(any implementation of MonadReader) rather than being specific to Reader.

The meaning of map in Reader is function composition:

¹⁴⁰http://en.wikipedia.org/wiki/Natural_transformation
¹⁴¹http://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem
¹⁴²http://blog.originate.com/blog/2013/10/21/reader-monad-for-dependency-injection/
¹⁴³http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.MonadReader

http://en.wikipedia.org/wiki/Natural_transformation
http://en.wikipedia.org/wiki/Natural_transformation
http://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem
http://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem
http://blog.originate.com/blog/2013/10/21/reader-monad-for-dependency-injection/
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.MonadReader
http://en.wikipedia.org/wiki/Natural_transformation
http://stackoverflow.com/questions/3870088/a-monad-is-just-a-monoid-in-the-category-of-endofunctors-whats-the-problem
http://blog.originate.com/blog/2013/10/21/reader-monad-for-dependency-injection/
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.MonadReader
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def map[R,A,B](f: A => B): Reader[R, A] => Reader[R, B] =

Reader(r => f compose r.run)

The meaning of join is to pass the same argument as both parameters to a binary function:

def join[R,A](x: Reader[R, Reader[R, A]]): Reader[R, A] =

Reader(r => x.run(r).run(r))

And the meaning of unit is to ignore the argument:

def unit[R,A](a: A): Reader[R, A] = Reader(_ => a)

The reader monad subsumes (and is simpler than) dependency injection¹⁴⁴. See Rúnar’s talks on
dependency injection with the reader monad:

“Dead-simple dependency inection”, from the 2012 Northeast Scala Symposium in Boston¹⁴⁵

“Lambda: the ultimate dependency injection framework”, from the 2012 YOW! Summer Conference
in Brisbane¹⁴⁶

See also Tony Morris’s talk “Dependency injection without the gymnastics”¹⁴⁷ from ETE 2012.

Eilenberg-Moore categories

Another categorical view of monads is through Eilenberg-Moore categories¹⁴⁸. The EM category of
a monad is the category of its algebras¹⁴⁹.

For example, the algebras for the Listmonad are Scala Monoids. The EM category of the Listmonad
is the category with monoids as its objects and monoid morphisms¹⁵⁰ (see chapter 10) as its arrows.

In general, the EM category for a monad can be found by the following method (source: Theory
Lunch¹⁵¹):

1. An F-algebra for the monad F is a type A together with a function a: F[A] => A such that
a(unit(x)) == x and a(join(x)) == a(map(x)(a)).

2. A morphism of F-algebras from an F-algebra a: F[A] => A to an F-algebra b: F[B] => B is
a function f: A => B such that b(map(x)(f)) == f(a(x)).

¹⁴⁴http://en.wikipedia.org/wiki/Dependency_injection
¹⁴⁵https://www.youtube.com/watch?v=ZasXwtTRkio
¹⁴⁶http://yow.eventer.com/yow-2012-1012/lambda-the-ultimate-dependency-injection-framework-by-runar-bjarnason-1277
¹⁴⁷http://vimeo.com/44502327
¹⁴⁸http://ncatlab.org/nlab/show/Eilenberg-Moore+category
¹⁴⁹https://www.fpcomplete.com/user/bartosz/understanding-algebras
¹⁵⁰http://en.wikipedia.org/wiki/Monoid#Monoid_homomorphisms
¹⁵¹http://theorylunch.wordpress.com/2013/06/06/an-initial-solution-to-the-monad-problem-and-then-some-more/#more-885
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http://yow.eventer.com/yow-2012-1012/lambda-the-ultimate-dependency-injection-framework-by-runar-bjarnason-1277
http://yow.eventer.com/yow-2012-1012/lambda-the-ultimate-dependency-injection-framework-by-runar-bjarnason-1277
http://vimeo.com/44502327
http://ncatlab.org/nlab/show/Eilenberg-Moore+category
https://www.fpcomplete.com/user/bartosz/understanding-algebras
http://en.wikipedia.org/wiki/Monoid#Monoid_homomorphisms
http://theorylunch.wordpress.com/2013/06/06/an-initial-solution-to-the-monad-problem-and-then-some-more/#more-885
http://theorylunch.wordpress.com/2013/06/06/an-initial-solution-to-the-monad-problem-and-then-some-more/#more-885
http://en.wikipedia.org/wiki/Dependency_injection
https://www.youtube.com/watch?v=ZasXwtTRkio
http://yow.eventer.com/yow-2012-1012/lambda-the-ultimate-dependency-injection-framework-by-runar-bjarnason-1277
http://vimeo.com/44502327
http://ncatlab.org/nlab/show/Eilenberg-Moore+category
https://www.fpcomplete.com/user/bartosz/understanding-algebras
http://en.wikipedia.org/wiki/Monoid#Monoid_homomorphisms
http://theorylunch.wordpress.com/2013/06/06/an-initial-solution-to-the-monad-problem-and-then-some-more/#more-885
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3. The Eilenberg-Moore category for the monad F is the category with F-algebras as objects, and
morphisms between F-algebras as arrows. The identity arrow is just the identity function,
and composition of arrows is ordinary function composition.

We can see how a Monoid[A] is precisely a List-algebra by this definition:

def fold[A](implicit M: Monoid[A]): List[A] => A =

_.foldRight(M.zero)(M.op)

It is a List-algebra because fold(List(x)) == x (that is, putting something in a list and then folding
that list is a no-op). And fold(x.flatten) == fold(x.map(fold.apply)) (that is, concatenating
a bunch of lists and folding the concatenated list is the same as folding a bunch of lists and then
folding the list of the results of those folds).

This is a sense in which “List is the monad for monoids.”

We can find the EM category for Option (thanks, Edward Kmett) easily. Every Option-algebra of
type Option[A] => A is given by some value a of type A and is implemented by _.getOrElse(a). So
an object in the EM category for Option is a Scala type A together with a distinguished value a:A.
An arrow in this category takes that value a:A to another value b:B. So it’s a function f: A => B

that satisfies o.map(f).getOrElse(b) == f(o.getOrElse(a)) for all o: Option[A]. That is, it’s just
a function that returns b when given a. In other words, Option is the monad for pointed sets¹⁵².

The EM category for the Reader[R,_] or R => _ monad is the category with objects that are each
given by a value r:R, implemented by _(r).

The monad whose EM category is just the category of Scala types is Id (the identity monad).

Adjunctions

An adjunction¹⁵³ consists of a pair of functors in a certain relationship to one another. Stated in
Scala, it is an implementation of this interface:

trait Adjunction[F[_], G[_]] {

def unit[A](a: A): G[F[A]]

def counit[A](fga: F[G[A]]): A

def F: Functor[F]

def G: Functor[G]

}

¹⁵²http://en.wikipedia.org/wiki/Pointed_set
¹⁵³http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Adjunction

http://en.wikipedia.org/wiki/Pointed_set
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Adjunction
http://en.wikipedia.org/wiki/Pointed_set
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Adjunction
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counit is pronounced “co-unit”, not “cow-knit”.

We say that F is left adjoint to G, written F ⊣ G in mathematical notation.

There are two laws of adjunctions:

1. counit(F.map(x)(unit)) == x

2. G.map(unit(x))(counit) == x

Another way to view an adjunction is that there is an isomorphism between the types F[A] => B

and A => G[B]:

def leftAdjunct[A,B](k: F[A] => B): A => G[B] =

a => G.map(unit(a))(k)

def rightAdjunct[A,B](k: A => G[B]): F[A] => B =

fa => counit(F.map(fa)(k))

An adjunction has the property that G[F[_]] is a monad:

def join[A](g: G[F[G[F[A]]]]): G[F[A]] =

G.map(g)(counit)

def map[A,B](g: G[F[A]])(f: A => B): G[F[B]] =

G.map(F.map(f))

def flatMap[A,B](g: G[F[A]])(f: A => G[F[B]]): G[F[B]] =

join(map(g)(f))

For example, the State monad is formed by the adjoint functors (_, S) and S => _.

In fact, every monad is formed by an adjunction.

Comonads

Dually¹⁵⁴, the composite functor F[G[A]] is a comonad¹⁵⁵. A comonad is exactly like a monad, except
the direction of the function arrows is reversed:

trait Comonad[F[_]] {

def counit[A](a: F[A]): A

def extend[A,B](a: F[A])(f: F[A] => B): F[B]

}

Instead of a unit that goes from A to F[A], we have a counit that goes from F[A] to A. And instead
of a flatMap that takes a function of type A => F[B], we have extend that takes a function going
the other way: F[A] => B.

A simple example of a comonad is the reader comonad:

¹⁵⁴http://en.wikipedia.org/wiki/Dual_%28mathematics%29
¹⁵⁵http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Comonad

http://en.wikipedia.org/wiki/Dual_%28mathematics%29
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Comonad
http://en.wikipedia.org/wiki/Dual_%28mathematics%29
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Comonad
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type Coreader[R,A] = (A,R)

val readerComonad[R] = new Comonad[({type f[x] = Coreader[R,x]})#f] {

def counit[A](a: (A,R)) = a._1

def extend[A,B](a: (A,R))(f: (A,R) => B) =

(f(a), a._2)

}

How is this a reader? What is it reading? Well, there is a primitive read operation:

def read[R](ar: (A,R)): R = ar._2

The reader comonadmodels computations that have a context (or configuration) of type R. The value
computed so far is the A, and we can always read the context to copy it into our working memory.
It supports the same operations as the reader monad and serves essentially the same purpose.

Note that unlike the readermonad which is a function R => A, the reader comonad is a pair (A, R).
The latter is left adjoint to the former and their adjunction forms the State monad.

But their adjunction therefore also forms a comonad! The “dual” of the State monad in this sense
is the Store comonad

case class Store[S](s: S, f: S => A)

The Store comonad essentially models a Moore machine. The current state of the machine is s, and
the output function is f. Note that the output depends only on the current state.

The type A => Store[S, A] is one possible representation of a Lens¹⁵⁶.

Other useful comonads include Rose Trees¹⁵⁷, Nonempty lists¹⁵⁸, zippers over lists¹⁵⁹, zippers over
trees¹⁶⁰, and cofree comonads¹⁶¹.

Links

• The essence of functional programming¹⁶² by Philip Wadler.
• Notions of computation and monads¹⁶³ by Eugenio Moggi.

¹⁵⁶http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.package\protect\char”0024\relax\protect\char”0024\relaxLens\protect\
char”0024\relax
¹⁵⁷http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Tree
¹⁵⁸http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.NonEmptyList
¹⁵⁹http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Zipper
¹⁶⁰http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.TreeLoc
¹⁶¹http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Cofree
¹⁶²http://www.eliza.ch/doc/wadler92essence_of_FP.pdf
¹⁶³http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf

http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.package\protect \char "0024\relax \protect \char "0024\relax Lens\protect \char "0024\relax 
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Tree
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.NonEmptyList
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Zipper
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.TreeLoc
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.TreeLoc
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Cofree
http://www.eliza.ch/doc/wadler92essence_of_FP.pdf
http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.package\protect \char "0024\relax \protect \char "0024\relax Lens\protect \char "0024\relax 
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.package\protect \char "0024\relax \protect \char "0024\relax Lens\protect \char "0024\relax 
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Tree
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.NonEmptyList
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Zipper
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.TreeLoc
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Cofree
http://www.eliza.ch/doc/wadler92essence_of_FP.pdf
http://www.disi.unige.it/person/MoggiE/ftp/ic91.pdf
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Notes on chapter 12: Applicative and traversable
functors

The cost of power

There is a tradeoff between applicative APIs and monadic ones. Monadic APIs are strictly more
powerful and flexible, but the cost is a certain loss of algebraic reasoning.

The difference is easy to demonstrate in theory, but takes some experience to fully appreciate in
practice.

Consider composition in a monad, via compose (Kleisli composition):

val foo: A => F[B] = ???

val bar: B => F[C] = ???

val baz: A => F[C] = bar compose foo

There is no way that the implementation of the compose function in the Monad[F] instance can
inspect the values foo and bar. They are functions, so the only way to “see inside” them is to
give them arguments. The values of type F[B] and F[C] respectively are not determined until the
composite function runs.

Contrast this with combining values with map2:

val quux: F[A] = ???

val corge: F[B] = ???

val grault: F[C] = map2(quux, corge)(f)

Here the implementation of map2 can actually look at the values quux and corge, and take different
paths depending onwhat they are. For instance, it might rewrite them to a normal form for improved
efficiency. If F is something like Future, it might decide to start immediately evaluating them on
different threads. If the data type F is applicative but not a monad, then the implementation has this
flexibility universally. There is then never any chance that an expression in F is going to involve
functions of the form A => F[B] that it can’t see inside of.

The lesson here is that power and flexibility in the interface often restricts power and flexibility in
the implementation. And a more restricted interface often gives the implementation more options.

See this StackOverflow question¹⁶⁴ for a discussion of the issue with regard to parsers.

See also the end of the note below on “Applicative laws”, for an example of the loss of algebraic
reasoning that comes with making an API monadic rather than applicative.

¹⁶⁴http://stackoverflow.com/questions/7861903/what-are-the-benefits-of-applicative-parsing-over-monadic-parsing

http://stackoverflow.com/questions/7861903/what-are-the-benefits-of-applicative-parsing-over-monadic-parsing
http://stackoverflow.com/questions/7861903/what-are-the-benefits-of-applicative-parsing-over-monadic-parsing
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Applicative laws

In the chapter, we decided to present the Applicative laws in terms of map2. We find that this works
pretty well pedagogically. We used the following laws:

• Left identity: map2(unit(()), fa)((_,a) => a) == fa

• Right identity: map2(fa, unit(()))((a,_) => a) == fa

• Associativity: product(product(fa, fb),fc) == map(product(fa, product(fb, fc)))(assoc)

• Naturality: map2(a,b)(productF(f,g)) == product(map(a)(f), map(b)(g))

But there are other ways to state the laws for Applicative. Commonly the laws for applicative
are stated in terms of apply, which is sometimes called idiomatic function application (where the
“idiom” is F):

def apply[A,B](ff: F[A => B], fa: F[A]): F[B] =

map2(ff, fa)(_(_))

The laws for apply are identity, homomorphism, interchange, and composition.

Identity law

The identity law for apply is stated as:

apply(unit(id), v) == v

That is, unit of the identity function is an identity for apply.

Homomorphism law

The homomorphism law for apply is stated as:

apply(unit(f), unit(x)) == unit(f(x))

In other words, idiomatic function application on units is the same as the unit of regular function
application. In more precise words, unit is a homomorphism from A to F[A]with regard to function
application.

Interchange law

The interchange law for apply is stated as:
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apply(u, unit(y)) == apply(unit(_(y)), u)

This law is essentially saying that unit is not allowed to carry an effect with regard to any
implementation of our applicative functor. If one argument to apply is a unit, then the other can
appear in either position. In other words, it should not matter when we evaluate a unit.

Composition

The composition law for apply is stated as:

apply(u, apply(v, w)) == apply(apply(apply(unit(f => g => f compose g), u), v), w)

This is saying that applying v to w and then applying u to that is the same as applying composition
to u, then v, and then applying the composite function to w. Intuitively it’s saying the same as:

u(v(w)) == (u compose v)(w)

We might state this law simply as: “function composition in an applicative functor works in the
obvious way.”

Applicative normal form

The applicative laws taken together can be seen as saying that we can rewrite any expression
involving unit or apply (and therefore by extension map2), into a normal form having one of the
following shapes:

pure(x) // for some x

map(x)(f) // for some x and f

map2(x, y)(f) // for some x, y, and f

map3(x, y, z)(f) // for some x, y, z, and f

// etc.

Where f, x, y, and z do not involve the Applicative primitives at all. That is, every expression in an
applicative functor A can be seen as lifting some pure function f over a number of arguments in A.

Note that this reasoning is lost when the applicative happens to be a monad and the expressions
involve flatMap. The applicative laws amount to saying that the arguments to map, map2, map3, etc
can be reasoned about independently, and an expression like flatMap(x)(f) explicitly introduces a
dependency (so that the result of f depends on x). See the note above on “The cost of power”.
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Applicatives in Scalaz

The Scalaz library¹⁶⁵ provides an Applicative trait.¹⁶⁶. In this trait, map2 et al are called lift2, lift3,
and so on.

The scalaz.syntax.applicative object supplies implicit syntax for applicatives to lift a function
of arbitrary arity:

(x |@| y |@| z)(f)

This is equivalent to lift3(x, y, z)(f).

Traversable functors

For further reading on traversable functors, see:

The Essence of the Iterator Pattern¹⁶⁷, by Jeremy Gibbons and Bruno Oliveira. Published in
Mathematically-Structured Functional Programming, 2006.

Applicative Programmingwith Effects¹⁶⁸, by ConorMcBride and Ross Paterson. Published in Journal
of Functional Programming, 2008.

An Investigation of the Laws of Traversals¹⁶⁹, by Mauro Jaskelioff and Ondrej Rypacek, published
in Mathematically-Structured Functional Programming, 2012.

Laws of traversable functors

Traverse[T[_]] has two laws. There are many ways to state them, but here is one:

Identity law:

sequence[Id,A](xs) == xs

That is, traversing in the identity applicative (type Id[X] = X) has no effect.

¹⁶⁵http://github.com/scalaz/scalaz
¹⁶⁶http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Applicative
¹⁶⁷http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/#iterator
¹⁶⁸http://www.soi.city.ac.uk/~ross/papers/Applicative.html
¹⁶⁹http://arxiv.org/pdf/1202.2919

http://github.com/scalaz/scalaz
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Applicative
http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/#iterator
http://www.soi.city.ac.uk/~ross/papers/Applicative.html
http://arxiv.org/pdf/1202.2919
http://github.com/scalaz/scalaz
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.Applicative
http://web.comlab.ox.ac.uk/oucl/work/jeremy.gibbons/publications/#iterator
http://www.soi.city.ac.uk/~ross/papers/Applicative.html
http://arxiv.org/pdf/1202.2919
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Fusion law:

sequence[({type f[x] = F[G[x]]})#f, A](xs) ==

map(sequence[F,G[A]](xs))(sequence[G,A])

That is, traversal in F[_] followed by traversal in G[_] can be fused into one traversal in the
composite applicative F[G[_]].

Monad transformers

Amonad transformer is a data type that composes a particular monad with any other monad, giving
us a composite monad that shares the behavior of both.

There is no general way of composing monads. Therefore we have to have a specific transformer
for each monad.

For example, OptionT¹⁷⁰ is a monad transformer that adds the behavior of Option to any other
monad. The type OptionT[M, A] behaves like the composite monad M[Option[_]]. Its flatMap

method binds over both the M and the Option inside, saving us from having to do the gymanstics of
binding over both.

Scalaz¹⁷¹ provides many more monad transformers, including StateT, WriterT, EitherT, and
ReaderT (also known as Kleisli).

Links

• Applicative Programming with Effects¹⁷²
• The essence of form abstraction¹⁷³ talks about writing compositional web forms using
applicative functors.

• Brent Yorgey’s Typeclassopedia¹⁷⁴ is a great resource on Monad, Applicative, Traverse and
other type classes.

Notes on chapter 13: External effects and I/O

Monads were discovered as a way of embedding effectful code into a pure language in the
early 1990s–see the 1992 Phillip Wadler paper The essence of functional programming¹⁷⁵ and also

¹⁷⁰http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.OptionT
¹⁷¹http://github.com/scalaz/scalaz
¹⁷²http://www.soi.city.ac.uk/~ross/papers/Applicative.html
¹⁷³http://groups.inf.ed.ac.uk/links/formlets/
¹⁷⁴http://www.haskell.org/haskellwiki/Typeclassopedia
¹⁷⁵http://homepages.inf.ed.ac.uk/wadler/papers/essence/essence.ps

http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.OptionT
http://github.com/scalaz/scalaz
http://www.soi.city.ac.uk/~ross/papers/Applicative.html
http://groups.inf.ed.ac.uk/links/formlets/
http://www.haskell.org/haskellwiki/Typeclassopedia
http://homepages.inf.ed.ac.uk/wadler/papers/essence/essence.ps
http://docs.typelevel.org/api/scalaz/stable/7.1.0-M3/doc/#scalaz.OptionT
http://github.com/scalaz/scalaz
http://www.soi.city.ac.uk/~ross/papers/Applicative.html
http://groups.inf.ed.ac.uk/links/formlets/
http://www.haskell.org/haskellwiki/Typeclassopedia
http://homepages.inf.ed.ac.uk/wadler/papers/essence/essence.ps
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Imperative functional programming¹⁷⁶ by Simon Peyton Jones (one of the creators of Haskell) and
Wadler.

There are various ways of representing the Free data type we made use of here. The traditional
formulation would be in terms of just two constructors, Return and Suspend:

trait Free[F[_],A]

case class Return[F[_],A](a: A) extends Free[F,A]

case class Suspend[F[_],A](f: F[Free[F, A]]) extends Free[F,A]

This type forms a Monad given only a Functor[F]. See Free Monads and the Yoneda Lemma¹⁷⁷
which talks about the relationship between these various formulations of Free and introduces some
relevant category theory.

Performance of Free

The naive, two-constructor representation of Free above has quadratic complexity for left-associated
sequences of flatMap (more standard terminology is “bind” rather than flatMap). For example:

def f(i: Int): Free[F,Int] = ...

val acc: Free[F,Int] = ...

val bad = (0 until N).map(f).foldLeft(acc)(_.map2(_)(_ + _))

This requires repeated trips to the “end” of the increasingly long chain to attach a further map2.
The first iteration requires 1 step, the next requires 2 steps, then 3 steps, and so on, up to N,
leading to quadratic complexity. See Reflection without remorse¹⁷⁸ which gives a very nice overview
of the general problem, discusses historical solutions and their tradeoffs, and presents a new
solution based on type-aligned sequences. Our solution given in the text rewrites binds to the right
during interpretation in the runFree function¹⁷⁹, which assumes that the target Monad has efficient
implementation for right-associated binds.

Lack of first-class universal quantification in Scala

The Translate type we introduced in this chapter is a common idiom for getting around Scala’s
lack of support for first-class, universally quantified values. We’d like for runFree to just accept a
forall A . F[A] => G[A] (this is not valid Scala syntax), but first-class functions and in fact all
first-class values in Scala are monomorphic–any type parameters they mention must be fixed to
some particular types. To get around this restriction, we defined Translate[F,G]:

¹⁷⁶http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps
¹⁷⁷http://blog.higher-order.com/blog/2013/11/01/free-and-yoneda/
¹⁷⁸http://homepages.cwi.nl/~ploeg/papers/zseq.pdf
¹⁷⁹https://github.com/fpinscala/fpinscala/blob/master/answers/src/main/scala/fpinscala/iomonad/IO.scala#L419

http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps
http://blog.higher-order.com/blog/2013/11/01/free-and-yoneda/
http://homepages.cwi.nl/~ploeg/papers/zseq.pdf
https://github.com/fpinscala/fpinscala/blob/master/answers/src/main/scala/fpinscala/iomonad/IO.scala#L419
http://homepages.inf.ed.ac.uk/wadler/papers/imperative/imperative.ps
http://blog.higher-order.com/blog/2013/11/01/free-and-yoneda/
http://homepages.cwi.nl/~ploeg/papers/zseq.pdf
https://github.com/fpinscala/fpinscala/blob/master/answers/src/main/scala/fpinscala/iomonad/IO.scala#L419
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trait Translate[F[_],G[_]] {

def apply[A](f: F[A]): G[A]

}

Although values must be monomorphic, methods in Scala can of course be polymorphic, so we
simply introduce a new first-class type containing a polymorphic method. Unfortunately, this means
that various polymorphic methods we might have lying around must be explicitly wrapped in
Translate:

def headOption[A](a: List[A]): Option[A]

Even though headOption is polymorphic, wewould need to explicitlywrap it in a Translate[List,Option]
if we ever needed to use it polymorphically in a first-class way. Another drawback of this approach
is that we require separate versions of Translate for different “shapes” of the input and output type
constructors–for instance, in chapter 14, we define a type RunnableST, which would typically just
be represented using a universally quantified ordinary value, without needing wrapping in a new
type.

Links

See Free Monads and Free Monoids¹⁸⁰ for more information about what “free” means.

Notes on chapter 14: Local effects and mutable state

The ST data type covered in this chapter was first introduced in Lazy Functional State Threads¹⁸¹.
The general idea, of using universal quantification to uniquely tag variables and enforce scoping,
is also useful in other situations. For instance, we can use the same idea to enforce a ‘safe’ API for
accessing file handles, preventing a file handle from being referenced after it passes out of scope.
Here is a sketch of an API:

¹⁸⁰http://blog.higher-order.com/blog/2013/08/20/free-monads-and-free-monoids/
¹⁸¹http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.3299

http://blog.higher-order.com/blog/2013/08/20/free-monads-and-free-monoids/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.3299
http://blog.higher-order.com/blog/2013/08/20/free-monads-and-free-monoids/
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.50.3299
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trait Handle[R]

trait SafeIO[S,+A] {

def flatMap[B](f: A => SafeIO[S,B]): SafeIO[S,B]

def map[B](f: A => B): SafeIO[S,B]

}

object SafeIO {

def unit[S,A](a: A): SafeIO[S,A]

// obtain a file handle

def handle[S](filename: String): SafeIO[S, Handle[S]]

// read a number of bytes from a handle, safely

def read[S](h: Handle[S], n: Int): SafeIO[S, Option[Array[Byte]]]

// run a 'closed' `SafeIO` computation

def run[A](io: RunIO[A]): IO[A]

}

/** A 'runnable' `SafeIO` must be universally quantified in `S`. */

trait RunIO[A] { def run[S]: SafeIO[S,A] }

By tagging Handle valueswith the scope inwhich they originate, we prevent running a SafeIOwhose
value incorporates a Handle, and we are also prevented from mixing Handle values originating in
different scopes. Thus, any Handle values allocated during run may be safely closed when the IO

action returned from run completes.

In many situations where we might use universal quantification like this to enforce some notion
of scoping, we can alternately “invert control”. For instance, the need to enforce scoping in both
SafeIO (and ST) comes about because we allow access to an underlying “handle” concept (for ST, we
have STRef and STArray, which are handles to mutable references), and we want to ensure that these
handles pass out of scope at some delimited location. We can instead choose to work with a different
abstraction not based on handles at all. Rather than letting the computation pull data from a Handle,
we can instead build up a “transducer” that gives abstract instructions for how to transform one
input stream to another, without getting access to any underlying handle. For instance, the library
we develop in chapter 15 provides access to files but the various consumers of our Process type
don’t deal directly with a Handle abstraction.

Effect systems

Universal quantification is a very simple technique for enforcing effect scoping, and the ST type is
easy to incorporate as a regular library intomany functional languages. There aremore sophisticated
techniques for tracking effects, called effect systems. The general idea here is that we track the effects
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of a value separate from its type. Effect systems often include natural subtyping of effects, so that,
for instance, a pure computation (with no effects) can be passed as an argument without explicit
wrapping to a function allowing for the effect of mutation to some variable or region of memory.
See for example Koka¹⁸², DDC¹⁸³, and Frank¹⁸⁴.

Notes on chapter 15: Stream processing and
incremental I/O

As mentioned in the text, an I/O monad is a kind of lowest common denominator for embedding
externally-interpreted effects in a pure language–the model when programming within IO is much
the same as ordinary imperative programming. Hence, ever since the IOmonad was first introduced
in the early 1990s, functional programmers have been interested in findingmore compositional ways
of assembling programs that talk to the external world.

For a while, lazy I/O was still quite commonly used, despite its problems. Oleg Kiselyov, a prominent
Haskell programmer and researcher, was very vocal in pointing out the problems with lazy I/O¹⁸⁵,
and popularized the concept of iteratees, which is an early “ancestor” of the library we developed in
this chapter. For more background, see Oleg’s page on stream processing¹⁸⁶. For a gentler exposition
to iteratees, also see “Iteratee: Teaching an old fold new tricks” in Issue 16 of The Monad Reader¹⁸⁷.
Oleg’s site¹⁸⁸ is a treasure trove of resources covering various aspects of FP, we highly recommend
spending some time there.

In the past 5 years or so, there have been a number of variations developed on the basic idea of
iteratees, generally aimed at making simpler to use and/or more expressive libraries. In Haskell, see
the conduit¹⁸⁹ and pipes¹⁹⁰ packages, as well as Edward Kmett’s machines¹⁹¹ package, which is the
Haskell library which most closely related to the one in this chapter.

There’s been some pushback in the Haskell community that the conduit and pipes packages are
overly complicated, and this has led to the development of the io-streams¹⁹² package. The library
is simpler in the sense that it is specialized to IO and bakes certain features directly into the basic
stream types used, but in our opinion, this library isn’t really a full replacement for a library like
conduit, pipes, or machines. An important goal of a stream processing library is to allow for pure
stream processing logic (often a majority of processing logic) to be defined separately from any I/O.

¹⁸²http://www.rise4fun.com/koka/tutorial
¹⁸³http://www.haskell.org/haskellwiki/DDC
¹⁸⁴http://cs.ioc.ee/efftt/mcbride-slides.pdf
¹⁸⁵http://okmij.org/ftp/Haskell/Iteratee/Lazy-vs-correct.txt
¹⁸⁶http://okmij.org/ftp/Streams.html
¹⁸⁷http://themonadreader.files.wordpress.com/2010/05/issue16.pdf
¹⁸⁸http://okmij.org/ftp/
¹⁸⁹https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
¹⁹⁰https://hackage.haskell.org/package/pipes-4.1.2/docs/Pipes-Tutorial.html
¹⁹¹https://hackage.haskell.org/package/machines
¹⁹²http://hackage.haskell.org/package/io-streams-1.0.1.0/docs/System-IO-Streams-Tutorial.html

http://www.rise4fun.com/koka/tutorial
http://www.haskell.org/haskellwiki/DDC
http://cs.ioc.ee/efftt/mcbride-slides.pdf
http://okmij.org/ftp/Haskell/Iteratee/Lazy-vs-correct.txt
http://okmij.org/ftp/Streams.html
http://themonadreader.files.wordpress.com/2010/05/issue16.pdf
http://okmij.org/ftp/
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
https://hackage.haskell.org/package/pipes-4.1.2/docs/Pipes-Tutorial.html
https://hackage.haskell.org/package/machines
http://hackage.haskell.org/package/io-streams-1.0.1.0/docs/System-IO-Streams-Tutorial.html
http://www.rise4fun.com/koka/tutorial
http://www.haskell.org/haskellwiki/DDC
http://cs.ioc.ee/efftt/mcbride-slides.pdf
http://okmij.org/ftp/Haskell/Iteratee/Lazy-vs-correct.txt
http://okmij.org/ftp/Streams.html
http://themonadreader.files.wordpress.com/2010/05/issue16.pdf
http://okmij.org/ftp/
https://www.fpcomplete.com/user/snoyberg/library-documentation/conduit-overview
https://hackage.haskell.org/package/pipes-4.1.2/docs/Pipes-Tutorial.html
https://hackage.haskell.org/package/machines
http://hackage.haskell.org/package/io-streams-1.0.1.0/docs/System-IO-Streams-Tutorial.html
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Although having a more convenient abstraction for I/O streams is useful, more general purpose,
abstract libraries are still important.

In the Scala world, the scalaz-stream library¹⁹³ developed out of work on machines¹⁹⁴ and the library
developed here. Prior to that, there were ports of iteratees in the core scalaz library¹⁹⁵.

Functional reactive programming

Streaming processing and incremental I/Omight not seem to havemuch to dowith UI programming,
but the problems have similarities. Functional Reactive Programming¹⁹⁶ (FRP) originated in the 1990s
with work done by Conal Elliott¹⁹⁷, Paul Hudak, and others (see Elliott’s list of publications¹⁹⁸ and
the 1997 paper Functional Reactive Animation¹⁹⁹ by Elliott and Hudak). FRP is often put forward as
a solution to the problem of describing interactive UIs in a functional way.

The FRP research has developed somewhat in parallel to the various approaches to streaming I/O
mentioned above. According to Elliott, what uniquely identifies FRP is the use of continuous time²⁰⁰,
and on providing a simple, precise denotation for the data types and various combinators. An FRP
library is based around two types of signals:

• Behavior[A]: a time-varying A value, having a denotation Time => A.
• Event[A]: a discrete, time-varying sequence of A values, having a denotation of List (Time,

A).

These types (and their denotations) are deliberately abstract, which means that implementations
are free to expose different sets of primitive combinators, and implementations are free to use very
different implementation strategies, depending on what primitives are exposed to users. See the
chapter notes for chapter 9²⁰¹ for more about this style of design. For instance, the algebra might
include the following functions:

• def foldP[B,A](e: Event[A], z: B)(f: (B,A) => B): Event[B] for left-folding the
sequence of values represented by an Event.

• def sample[A,B](e: Event[A], b: Behavior[B]): Event[B] for sampling from a continuous
behavior whenever an Event emits a value

¹⁹³https://github.com/scalaz/scalaz-stream
¹⁹⁴https://hackage.haskell.org/package/machines
¹⁹⁵https://github.com/scalaz/scalaz
¹⁹⁶http://en.wikipedia.org/wiki/Functional_reactive_programming
¹⁹⁷http://conal.net/
¹⁹⁸http://conal.net/papers/
¹⁹⁹http://conal.net/papers/icfp97/
²⁰⁰http://conal.net/blog/posts/why-program-with-continuous-time
²⁰¹Chapter-9:-Parser-combinators
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Each of these operations can be given a clear interpretation in terms of the denotations of Event
and Behavior, but implementations may use some more interesting representation of these types to
facilitate efficient interpretation.

The FRP use of continuous time is important for much the same reasons that non-strictness is
important. We saw in chapter 5 how non-strictness let us write more modular code, by decoupling
the description of a computation (which may be infinite) from its evaluation. In the same way,
continuous time lets us decouple the description of a time-varying program from any sampling or
discretization that occurs at the end of the day when running our program.

In some ways, the denotations for Event and Behavior are a little too flexible–there is no
enforcement of causality, for instance–a Behavior[A] => Behavior[B] could in priciple let the value
of the output behavior at time t depend on the value of the input behavior at time t + k, essentially
“looking into the future” to determine the value at the present. Elliott discusses some of these
problems in this post²⁰². The flexibility of the semantic model also means it is not immediately clear
what actual algebra should be exposed to the programmer–we clearly want something expressive,
but also limited “in the right ways” such that it is possible to implement efficiently. This is a
challenging design problem in and of itself.

FRP is a deep area within functional programming. Here are just a few links to learn more:

• Push-pull FRP²⁰³ by Elliott provides a nice, modern introduction to the ideas of FRP and
discusses issues in crafting an efficient implementation. We also like Heinrich Apfelmus’
blog²⁰⁴, which has a number of posts talking about FRP and various implementation issues.

• Arrowized FRP (AFRP) arose in part because of the difficulties in formulating efficient
implementations of the FRP model. In AFRP, behaviors and events are not first class, instead
we have first-class signal transformers, generally based on some variation of the Arrow algebra.
See The Reactive Arcade²⁰⁵, which has an introduction to Yampa, an AFRP system, and also
Causal Commutative Arrows and their Optimization²⁰⁶, which discusses ways of optimizing
AFRP for efficient implementation.

• With both arrowized and traditional FRP, there are questions about the best way to allow for
various forms of context-sensitivity and dynamic switching between signals (sometimes called
“dynamic event switching”). The need for this can arise in many situations, but, for instance,
it can be used for modeling UIs in which the user can add and remove new UI elements by
interacting with existing UI elements on the page. In traditional FRP, use of dynamic event
switching can make it easy to introduce time leaks, due to accidentally retaining the full
history of an Event–Heinrich Apfelmus discusses this issue here²⁰⁷. And in AFRP, since the
signals themselves are not first class, it isn’t immediately obvious what the best way is to
represent and interact with a dynamic, changing set of signals (though this issue has been

²⁰²http://conal.net/blog/posts/garbage-collecting-the-semantics-of-frp
²⁰³http://conal.net/papers/push-pull-frp/
²⁰⁴http://apfelmus.nfshost.com/blog.html
²⁰⁵http://www.antonycourtney.com/pubs/hw03.pdf
²⁰⁶http://cs-www.cs.yale.edu/c2/images/uploads/ICFP-CCA.pdf
²⁰⁷http://apfelmus.nfshost.com/blog/2011/05/15-frp-dynamic-event-switching.html
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also addressed in the AFRP line of research, see Antony Courtney’s thesis²⁰⁸ pg 123, also the
Reactive Arcade²⁰⁹ and FRP, continued²¹⁰ papers).

Over time, the term “FRP” has been somewhat diluted, and the term is sometimes incorrectly used
to refer to systems with discrete time, and even decidedly non-functional libraries making use of
explicit callbacks and side effects!

²⁰⁸http://www.antonycourtney.com/pubs/ac-thesis.pdf
²⁰⁹http://www.antonycourtney.com/pubs/hw03.pdf
²¹⁰http://haskell.cs.yale.edu/wp-content/uploads/2011/02/workshop-02.pdf
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Hints for exercises
This section contains hints for various exercises in the book, to help you get started in coming up
with an answer, or to get you unstuck if you run into trouble.

Not all exercises have hints. If you think of a good hint for an exercise and would like it to be
available to other readers, submit a pull request to the book’s GitHub repository.²¹¹ The electronic
version of these hints is available under the answerkey directory in that repository.

Hints for exercises in chapter 2

Exercise 2.01

You will definitely need a helper method like we did with factorial. But think about what
information you need at each iteration. You might need two values, one for each of the two numbers
you need to calculate the next number. And you know the first two numbers already.

Note that the nth Fibonacci number has a closed form solution (see http://en.wikipedia.org/wiki/Fibonacci_-
number#Closed-form_expression). Using that would be cheating; the point here is just to get some
practice writing loops with tail-recursive functions.

Exercise 2.02

You know the array is not sorted as soon as you encounter two adjacent elements for which
gt(first, second) returns true (note that equal adjacent elements are in order).

Exercise 2.03

You have to take an argument of type A and return a function of type B => C. That function has to
take an argument of type B and return a value of type C. Follow the types.

Exercise 2.04

You want to return a binary function, so start by taking two arguments. You will have to pass those
arguments to f one at a time.

²¹¹https://github.com/fpinscala/fpinscala

https://github.com/fpinscala/fpinscala
https://github.com/fpinscala/fpinscala
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Exercise 2.05

You need to return a new function of type A => C. Start by accepting an argument of type A. Now
follow the types. You have an A. What can you do with it? Do you have a function that accepts an
A?

Hints for exercises in chapter 3

Exercise 3.02

Try pattern matching on l.

Exercise 3.04

What should the function do if the n argument is 0?What should it do if the list is empty?What if the
list is not empty and n is nonzero? Consider all of these cases. Use pattern-matching and recursion.

Exercise 3.05

What should the function do if the list is empty? What if it’s not empty? Use pattern-matching and
recursion.

Exercise 3.07

Look at the program trace from the previous example. Based on the trace, is it possible the function
supplied could choose to terminate the recursion early?

Exercise 3.08

The first step in the trace is Cons(1, foldRight(Cons(2, Cons(3, Nil)), Nil:List[Int])(Cons(_-

,_)))

Exercise 3.13

It’s possible to do both directions. For your foldLeft in terms of foldRight, you must build up,
using foldRight, some value that you can use to achieve the effect of foldLeft. (It won’t be the B
of the return type necessarily)

Exercise 3.15

Use foldRight.
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Exercise 3.16

Try using foldRight. You shouldn’t need to resort to an explicitly recursive function.

Exercise 3.17

Again, try using foldRight. You shouldn’t need to resort to an explicitly recursive function.

Exercise 3.18

Again, try using foldRight. You shouldn’t need to resort to an explicitly recursive function.

Exercise 3.19

Again, try using foldRight!

Exercise 3.20

You should be able to use a combination of existing functions.

Exercise 3.24

It’s good to specify some properties about your implementation up front. For example, do you expect
these expressions to be true?

(xs append ys append zs) hasSubsequence ys

xs hasSubsequence Nil

You will find that the answer to one of these implies something about the other.

Exercise 3.28

The signature is def map[A,B](t: Tree[A])(f: A => B): Tree[B].

Exercise 3.29

The signature is def fold[A,B](t: Tree[A])(l: A => B)(b: (B,B) => B): B. See if you can
define this function, then reimplement the functions you’ve already written for Tree.
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Hints for exercises in chapter 4

Exercise 4.03

Use the flatMap and possibly map methods.

Exercise 4.04

Break the list out using pattern-matching where there will be a recursive call to sequence in the
cons case. Alternatively, use the foldRight method to take care of the recursion for you.

Exercise 4.05

The traverse function can be written with explicit recursion or use foldRight to do the recursion
for you. Implementing sequence using traverse may be more trivial than you think.

Exercise 4.06

The map2 function that we wrote earlier for Option will follow the same pattern for Either.

Exercise 4.07

The signature of traverse is

def traverse[E,A,B](es: List[A])(f: A => Either[E, B]): Either[E, List[B]]

And the signature of sequence is:

def sequence[E,A](es: List[Either[E, A]]): Either[E, List[A]]

In your implementation, you can pattern-match the list and use explicit recursion or use foldRight
to perform the recursion for you.

Hints for exercises in chapter 5

Exercise 5.02

Many Stream functions can start by pattern matching on the Stream and considering what to do in
each of the two cases. This particular function needs to first consider whether it needs to look at the
stream at all.
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Exercise 5.04

Use foldRight.

Exercise 5.06

Let None: Option[A] be the first argument to foldRight. Follow the types from there.

Exercise 5.09

The example function ones is recursive. How could you define from recursively?

Exercise 5.10

Chapter two discussed writing loops functionally, using a recursive helper function. How would
that apply here?

Exercise 5.11

Review the techniques you used in exercise 4.1 for working with Option.

Exercise 5.14

Try to avoid using explicit recursion. Use zipAll and takeWhile.

Exercise 5.15

Try unfold with this as the starting state. You may want to handle emitting the empty Stream at
the end as a special case.

Exercise 5.16

The function can’t be implemented using unfold, since unfold generates elements of the Stream

from left to right. It can be implemented using foldRight though.

Hints for exercises in chapter 6

Exercise 6.02

Use nonNegativeInt to generate a random integer between 0 and Int.MaxValue, inclusive. Then
map that to the range of doubles from 0 to 1.
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Exercise 6.05

This is an application of map over nonNegativeInt or nextInt.

Exercise 6.06

Start by accepting an RNG. Note that you have a choice in which RNG to pass to which function, and
in what order. Think about what you expect the behavior to be, and whether your implementation
meets that expectation.

Exercise 6.07

You need to recursively iterate over the list. Remember that you can use foldLeft or foldRight
instead of writing a recursive definition. You can also reuse the map2 function you just wrote.
As a test case for your implementation, we should expect sequence(List(unit(1), unit(2),

unit(3)))(r)._1 to return List(1, 2, 3).

Exercise 6.08

The implementation using flatMap will be almost identical to the failed one where we tried to use
map.

Exercise 6.10

Use the specialized functions for Rand as inspiration.

Hints for exercises in chapter 7

Exercise 7.01

The function shouldn’t require that the two Par inputs have the same type.

Exercise 7.02

What if run were backed by a java.util.concurrent.ExecutorService? You may want to spend
some time looking through the java.util.concurrent package to see what other useful things you
can find.
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Exercise 7.03

In order to respect timeouts, we’d need a new Future implementation that records the amount of
time spent evaluating one future, then subtracts that time from the available time allocated for
evaluating the other future.

Exercise 7.05

One possible implementation will be very similar in structure to a function we’ve implemented
previously, for Option.

Exercise 7.08

There is a problem is with fixed size thread pools. What happens if the thread pool is bounded to be
of exactly size 1?

Exercise 7.10

Try adding a second continuation argument to Future.apply, which takes an error handler.

Hints for exercises in chapter 8

Exercise 8.01

When thinking of properties a function should satisfy, it often helps to consider inputs that have
some structure that is easy to describe. A list where all the elements are the same is one simple
structure.

Exercise 8.03

We can refer to the enclosing Prop instance with Prop.this

Exercise 8.12

Use the listOfN function you wrote before.

Exercise 8.13

You can use a sized generator.
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Exercise 8.15

You will need to add to the representation of Gen. For example, Gen[Int] should be capable of
generating random integers as well as generating a stream of all the integers from Int.MinValue to
Int.MaxValue. You may want to have the behavior depend on how many test cases were requested.

Exercise 8.17

Use the Gen[Par[Int]] generator from the last exercise.

Exercise 8.19

If we are just looking at the random case, one way to have the generated Int depend on the String
might be to set the seed of a new random number generator to be equal to the hashCode of the given
input String.

Exercise 8.22

Use the Gen[Par[Int]] generator from the last exercise.

Exercise 8.25

If we are just looking at the random case, one way to have the generated Int depend on the String
might be to set the seed of a new random number generator to be equal to the hashCode of the given
input String.

Hints for exercises in chapter 9

Exercise 9.01

Try mapping over the result of product.

Exercise 9.02

Multiplication of numbers is associative, a * (b * c) == (a * b) * c. Is there an analogous
property for parsers? What can you say about the relationship between map and product?

Exercise 9.06

Given a string of digits, s, you can use s.toInt to convert that to an Int.
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Exercise 9.07

Use flatMap and succeed.

Exercise 9.09

For the tokens of your grammar, it’s often a good idea to skip any trailingwhitespace, to avoid having
to deal with whitespace everywhere in your grammar. Try introducing a combinator for this.

When sequencing parsers with **, it’s common to want to ignore one of the parsers in the sequence,
and you’ll probably want to introduce combinators for this.

Exercise 9.11

Here are two options: we could return the most recent error in the or chain, or we could return
whichever error occurred after getting furthest into the input string.

Exercise 9.14

You may want string to report the immediate cause of failure (whichever character didn’t match),
as well as the overall string being parsed.

Exercise 9.17

Try adding another piece of state to Location, isSliced. You may want to rename Location to
ParseState, as it’s no longer just the location!

Exercise 9.18

You can add an attribute otherFailures: List[ParseError] on ParseError itself. This will be a
list of parse errors that occurred in other branches of the parser.

Hints for exercises in chapter 10

Exercise 10.02

Because we are abstract in the type parameter A, we are limited in the number of possible
implementations. But there’s more than one implementation that meets the monoid laws.
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Exercise 10.03

Again we are limited in the number of ways we can combine values with op since it should
compose functions of type A => A for any choice of A. And again there is more than one possible
implementation. There is only one possible zero though.

Exercise 10.04

You will need to generate three values of type A for testing associativity. Write a new Gen combinator
for this if necessary.

Exercise 10.05

You can map and then concatenate, but that will go over the list twice. Use a single fold instead.

Exercise 10.06

Notice that the type of the function that is passed to foldRight is (A, B) => B, which can be curried
to A => (B => B). This is a strong hint that we should use the endofunction monoid B => B to
implement foldRight. The implementation of foldLeft is then just the dual. Don’t worry if these
implementations are not very efficient.

Exercise 10.07

The sequences of lengths 0 and 1 are special cases to consider.

Exercise 10.08

Think about what a partial answer looks like. If we’ve only seen some of the elements of a sequence,
we need to know if what we have seen so far is ordered. For every new element we see, if the
sequence is in fact ordered, it should not fall inside the range of elements seen already.

Exercise 10.09

Try creating a data type which tracks the interval of the values in a given segment, as well as whether
an “unordered segment” has been found.

When merging the values for two segments, think about how these two pieces of information should
be updated.
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Exercise 10.10

A Stub should never contain any whitespace.

Exercise 10.11

You can write default implementations on the Foldable trait an then override them as necessary.

Exercise 10.18

Use mapMergeMonoid and intAddition.

Hints for exercises in chapter 11

Exercise 11.01

You have already defined unit and flatMap for these types. The solution is to simply call them from
your Monad implementation.

Exercise 11.02

Since State is a binary type constructor, we need to partially apply it with the S type argument.
Thus, it is not just one monad, but an entire family of monads, one for each type S. You need to
devise a way of capturing the type S in a type-level scope and providing a partially applied State

type in that scope.

Exercise 11.03

These implementations should be very similar to implementations from previous chapters, only with
more general types, and using the functions on the Monad trait. Make use of unit and map2.

Exercise 11.04

There is more than one way of writing this function. For example, try starting with a List[F[A]]

of length n.

Exercise 11.06

You can start by pattern matching on the argument. If the list is empty, our only choice is to return
unit(Nil)
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Exercise 11.07

Follow the types. There is only one possible implementation.

Exercise 11.08

Look at the signature of compose. What happens if A is Unit?

Exercise 11.09

You want to show that these two are equivalent:

flatMap(flatMap(x)(f))(g) == flatMap(x)(a => flatMap(f(a))(g))

compose(compose(f, g), h) == compose(f, compose(g, h))

Rewrite one in terms of the other.

Exercise 11.12

Follow the types here. Remember that A can be any type at all, including the type F[B] for some
type B.

Exercise 11.13

Join is sometimes called “flatten”, and flatMap “maps and then flattens”.

Exercise 11.14

Rewrite the monad laws stated in terms of flatMap by substituting your implementation of join.

Exercise 11.19

What would you expect getState to return right after you call setState?

Exercise 11.20

This monad is very similar to the State monad, except that it’s “read-only”. You can “get” but not
“set” the R value that flatMap carries along.
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Hints for exercises in chapter 12

Exercise 12.02

To implement map2 in terms of apply, try using f.curried and following the types.

Exercise 12.03

Look at your implementation of map2 in terms of apply and try to follow the same pattern.

Exercise 12.04

Try it yourself in the REPL with some small examples.

Exercise 12.05

You can write flatMap using pattern matching.

Exercise 12.06

Implement map2 using pattern matching. If both sides are a failure, try to keep the order of failures
consistent.

Exercise 12.07

Implement map2 in terms of flatMap. Start with each applicative law in turn, then substitute equals
for equals and apply the monad laws until you get an equation that is obviously true.

Exercise 12.08

Follow the types.

Exercise 12.09

The definition of map2 is very short. The only things you can do are map2 and unit from the F and
G applicatives. Follow the types.

Exercise 12.10

You will find this very difficult without an interactive proof assistant like Coq or Agda. If you do
decide to take on the challenge, this is the kind of problem that might take someone several days or
even a few weeks to think about.
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Exercise 12.12

The standard library lets you treat a Map as essentially a list of pairs.

Exercise 12.13

Follow the types. There is generally only one sensible implementation that typechecks.

Exercise 12.14

What happens if you call traversewith Applicative[Option]? Is there an even simpler Applicative
you could use?

Exercise 12.16

We need to use a stack. Fortunately a List is the same thing as a stack, and we already know how
to turn any traversable into a list!

Exercise 12.17

This implementation is very similar to toList except instead of accumulating into a list, we are
accumulating into a B using the f function.

Exercise 12.19

Follow the types. There is only implementation that typechecks.

Exercise 12.20

Follow the types. There is only implementation that typechecks.

Hints for exercises in chapter 13

Exercise 13.02

Pattern this after the TailRec interpreter we gave in the text earlier

Exercise 13.04

To define translate, use runFree with Free[Function0,_] as the target monad. Then use the
specialized runTrampoline function written earlier.
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Exercise 13.05

Use Par.async[Either[Throwable,Array[Byte]]] { cb => ... }. Follow the types - what is the
type of cb here and how can you use it?

Hints for exercises in chapter 15

Exercise 15.03

You’ll need to use a local helper function which accepts the current sum and count.

Exercise 15.11

Use await



Answers to exercises
This section contains answers to exercises in the book. Note that usually only one answer is given
per exercise, but there may be more than one correct answer. We highly recommend that you
check out the book’s source code repository from GitHub²¹² and look at the answers given there for
each chapter. Those answers are shown in context, with more detailed explanations, more varied
solutions, and in some cases complete implementations that do not fit in this booklet.

Answers to exercises for chapter 2

Exercise 2.01

def fib(n: Int): Int = {

@annotation.tailrec

def loop(n: Int, prev: Int, cur: Int): Int =

if (n == 0) prev

else loop(n - 1, cur, prev + cur)

loop(n, 0, 1)

}

0 and 1 are the first two numbers in the sequence, so we start the accumulators with those. At every
iteration, we add the two numbers to get the next one.

Exercise 2.02

def isSorted[A](as: Array[A], gt: (A,A) => Boolean): Boolean = {

@annotation.tailrec

def go(n: Int): Boolean =

if (n >= as.length-1) true

else if (gt(as(n), as(n+1))) false

else go(n+1)

go(0)

}

Exercise 2.03

Note that => associates to the right, so we could write the return type as A => B => C

²¹²https://github.com/fpinscala/fpinscala
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def curry[A,B,C](f: (A, B) => C): A => (B => C) =

a => b => f(a, b)

NB: The Function2 trait has a curried method already, so if you wanted to cheat a little you could
write the answer as f.curried

Exercise 2.04

def uncurry[A,B,C](f: A => B => C): (A, B) => C =

(a, b) => f(a)(b)

NB: There is a method on the Function object in the standard library, Function.uncurried that you
can use for uncurrying.

Note that we can go back and forth between the two forms. We can curry and uncurry and the two
forms are in some sense “the same”. In FP jargon, we say that they are isomorphic (“iso” = same;
“morphe” = shape, form), a term we inherit from category theory.

Exercise 2.05

def compose[A,B,C](f: B => C, g: A => B): A => C =

a => f(g(a))

Answers to exercises for chapter 3

Exercise 3.01

Three. The third case is the first that matches, with x bound to 1 and y bound to 2.

Exercise 3.02

Although we could return Nilwhen the input list is empty, we choose to throw an exception instead.
This is a somewhat subjective choice. In our experience, taking the tail of an empty list is often a
bug, and silently returning a value just means this bug will be discovered later, further from the
place where it was introduced.

It’s generally good practice when pattern matching to use _ for any variables you don’t intend to
use on the right hand side of a pattern. This makes it clear the value isn’t relevant.
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def tail[A](l: List[A]): List[A] =

l match {

case Nil => sys.error("tail of empty list")

case Cons(_,t) => t

}

Exercise 3.03

If a function body consists solely of a match expression, we’ll often put the match on the same line
as the function signature, rather than introducing another level of nesting.

def setHead[A](l: List[A], h: A): List[A] = l match {

case Nil => sys.error("setHead on empty list")

case Cons(_,t) => Cons(h,t)

}

Exercise 3.04

Again, it’s somewhat subjective whether to throw an exception when asked to drop more elements
than the list contains. The usual default for drop is not to throw an exception, since it’s typically used
in cases where this is not indicative of a programming error. If you pay attention to how you use
drop, it’s often in cases where the length of the input list is unknown, and the number of elements
to be dropped is being computed from something else. If drop threw an exception, we’d have to first
compute or check the length and only drop up to that many elements.

def drop[A](l: List[A], n: Int): List[A] =

if (n <= 0) l

else l match {

case Nil => Nil

case Cons(_,t) => drop(t, n-1)

}

Exercise 3.05

Somewhat overkill, but to illustrate the feature we’re using a pattern guard, to only match a Cons

whose head satisfies our predicate, f. The syntax is to add if <cond> after the pattern, before the
=>, where <cond> can use any of the variables introduced by the pattern.
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def dropWhile[A](l: List[A], f: A => Boolean): List[A] =

l match {

case Cons(h,t) if f(h) => dropWhile(t, f)

case _ => l

}

Exercise 3.06

Note that we’re copying the entire list up until the last element. Besides being inefficient, the natural
recursive solution will use a stack frame for each element of the list, which can lead to stack
overflows for large lists (can you see why?). With lists, it’s common to use a temporary, mutable
buffer internal to the function (with lazy lists or streams, which we discuss in chapter 5, we don’t
normally do this). So long as the buffer is allocated internal to the function, the mutation is not
observable and RT is preserved.

Another common convention is to accumulate the output list in reverse order, then reverse it at the
end, which doesn’t require even local mutation. We’ll write a reverse function later in this chapter.

def init[A](l: List[A]): List[A] =

l match {

case Nil => sys.error("init of empty list")

case Cons(_,Nil) => Nil

case Cons(h,t) => Cons(h,init(t))

}

def init2[A](l: List[A]): List[A] = {

import collection.mutable.ListBuffer

val buf = new ListBuffer[A]

@annotation.tailrec

def go(cur: List[A]): List[A] = cur match {

case Nil => sys.error("init of empty list")

case Cons(_,Nil) => List(buf.toList: _*)

case Cons(h,t) => buf += h; go(t)

}

go(l)

}

Exercise 3.07

No, this is not possible! The reason is because before we ever call our function, f, we evaluate its
argument, which in the case of foldRightmeans traversing the list all the way to the end. We need
non-strict evaluation to support early termination—we discuss this in chapter 5.
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Exercise 3.08

We get back the original list! Why is that? As we mentioned earlier, one way of thinking about what
foldRight “does” is it replaces the Nil constructor of the list with the z argument, and it replaces
the Cons constructor with the given function, f. If we just supply Nil for z and Cons for f, then we
get back the input list.

foldRight(Cons(1, Cons(2, Cons(3, Nil))), Nil:List[Int])(Cons(_,_))

Cons(1, foldRight(Cons(2, Cons(3, Nil)), Nil:List[Int])(Cons(_,_)))

Cons(1, Cons(2, foldRight(Cons(3, Nil), Nil:List[Int])(Cons(_,_))))

Cons(1, Cons(2, Cons(3, foldRight(Nil, Nil:List[Int])(Cons(_,_)))))

Cons(1, Cons(2, Cons(3, Nil)))

Exercise 3.09

def length[A](l: List[A]): Int =

foldRight(l, 0)((_,acc) => acc + 1)

Exercise 3.10

It’s common practice to annotate functions you expect to be tail-recursive with the tailrec

annotation. If the function is not tail-recursive, it will yield a compile error, rather than silently
compiling the code and resulting in greater stack space usage at runtime.

@annotation.tailrec

def foldLeft[A,B](l: List[A], z: B)(f: (B, A) => B): B = l match {

case Nil => z

case Cons(h,t) => foldLeft(t, f(z,h))(f)

}

Exercise 3.11

def sum3(l: List[Int]) = foldLeft(l, 0)(_ + _)

def product3(l: List[Double]) = foldLeft(l, 1.0)(_ * _)

def length2[A](l: List[A]): Int = foldLeft(l, 0)((acc,h) => acc + 1)

Exercise 3.12
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def reverse[A](l: List[A]): List[A] =

foldLeft(l, List[A]())((acc,h) => Cons(h,acc))

Exercise 3.13

The implementation of foldRight in terms of reverse and foldLeft is a common trick for avoiding
stack overflows when implementing a strict foldRight function as we’ve done in this chapter. (We’ll
revisit this in a later chapter, when we discuss laziness).

The other implementations build up a chain of functionswhich, when called, results in the operations
being performed with the correct associativity. We are calling foldRight with the B type being
instantiated to B => B, then calling the built up function with the z argument. Try expanding the
definitions by substituting equals for equals using a simple example, like foldLeft(List(1,2,3),
0)(_ + _) if this isn’t clear. Note these implementations are more of theoretical interest - they aren’t
stack-safe and won’t work for large lists.

def foldRightViaFoldLeft[A,B](l: List[A], z: B)(f: (A,B) => B): B =

foldLeft(reverse(l), z)((b,a) => f(a,b))

def foldRightViaFoldLeft_1[A,B](l: List[A], z: B)(f: (A,B) => B): B =

foldLeft(l, (b:B) => b)((g,a) => b => g(f(a,b)))(z)

def foldLeftViaFoldRight[A,B](l: List[A], z: B)(f: (B,A) => B): B =

foldRight(l, (b:B) => b)((a,g) => b => g(f(b,a)))(z)

Exercise 3.14

append simply replaces the Nil constructor of the first list with the second list, which is exactly the
operation performed by foldRight.

def appendViaFoldRight[A](l: List[A], r: List[A]): List[A] =

foldRight(l, r)(Cons(_,_))

Exercise 3.15

Since append takes time proportional to its first argument, and this first argument never grows
because of the right-associativity of foldRight, this function is linear in the total length of all lists.
You may want to try tracing the execution of the implementation on paper to convince yourself that
this works.

Note that we’re simply referencing the append function, without writing something like (x,y) =>

append(x,y) or append(_,_). In Scala there is a rather arbitrary distinction between functions
defined asmethods, which are introduced with the def keyword, and function values, which are the
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first-class objects we can pass to other functions, put in collections, and so on. This is a case where
Scala lets us pretend the distinction doesn’t exist. In other cases, you’ll be forced to write append

_ (to convert a def to a function value) or even (x: List[A], y: List[A]) => append(x,y) if the
function is polymorphic and the type arguments aren’t known.

def concat[A](l: List[List[A]]): List[A] =

foldRight(l, Nil:List[A])(append)

Exercise 3.16

def add1(l: List[Int]): List[Int] =

foldRight(l, Nil:List[Int])((h,t) => Cons(h+1,t))

Exercise 3.17

def doubleToString(l: List[Double]): List[String] =

foldRight(l, Nil:List[String])((h,t) => Cons(h.toString,t))

Exercise 3.18

A natural solution is using foldRight, but our implementation of foldRight is not stack-safe. We
can use foldRightViaFoldLeft to avoid the stack overflow (variation 1), but more commonly, with
our current implementation of List, map will just be implemented using local mutation (variation
2). Again, note that the mutation isn’t observable outside the function, since we’re only mutating a
buffer that we’ve allocated.

def map[A,B](l: List[A])(f: A => B): List[B] =

foldRight(l, Nil:List[B])((h,t) => Cons(f(h),t))

def map_1[A,B](l: List[A])(f: A => B): List[B] =

foldRightViaFoldLeft(l, Nil:List[B])((h,t) => Cons(f(h),t))

def map_2[A,B](l: List[A])(f: A => B): List[B] = {

val buf = new collection.mutable.ListBuffer[B]

def go(l: List[A]): Unit = l match {

case Nil => ()

case Cons(h,t) => buf += f(h); go(t)

}

go(l)

List(buf.toList: _*)

// converting from the standard Scala list to the list we've defined here

}

Exercise 3.19
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/*

The discussion about `map` also applies here.

*/

def filter[A](l: List[A])(f: A => Boolean): List[A] =

foldRight(l, Nil:List[A])((h,t) => if (f(h)) Cons(h,t) else t)

def filter_1[A](l: List[A])(f: A => Boolean): List[A] =

foldRightViaFoldLeft(l, Nil:List[A])((h,t) => if (f(h)) Cons(h,t) else t)

def filter_2[A](l: List[A])(f: A => Boolean): List[A] = {

val buf = new collection.mutable.ListBuffer[A]

def go(l: List[A]): Unit = l match {

case Nil => ()

case Cons(h,t) => if (f(h)) buf += h; go(t)

}

go(l)

List(buf.toList: _*)

// converting from the standard Scala list to the list we've defined here

}

Exercise 3.20

/*

This could also be implemented directly using `foldRight`.

*/

def flatMap[A,B](l: List[A])(f: A => List[B]): List[B] =

concat(map(l)(f))

Exercise 3.21

def filterViaFlatMap[A](l: List[A])(f: A => Boolean): List[A] =

flatMap(l)(a => if (f(a)) List(a) else Nil)

Exercise 3.22

To match on multiple values, we can put the values into a pair and match on the pair, as shown next,
and the same syntax extends tomatching onN values (see sidebar “Pairs and tuples in Scala” formore
about pair and tuple objects). You can also (somewhat less conveniently, but a bit more efficiently)
nest pattern matches: on the right hand side of the =>, simply begin another match expression. The
inner match will have access to all the variables introduced in the outer match.

The discussion about stack usage from the explanation of map also applies here.
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def addPairwise(a: List[Int], b: List[Int]): List[Int] = (a,b) match {

case (Nil, _) => Nil

case (_, Nil) => Nil

case (Cons(h1,t1), Cons(h2,t2)) => Cons(h1+h2, addPairwise(t1,t2))

}

Exercise 3.23

This function is usually called zipWith. The discussion about stack usage from the explanation of
map also applies here. By putting the f in the second argument list, Scala can infer its type from the
previous argument list.

def zipWith[A,B,C](a: List[A], b: List[B])(f: (A,B) => C): List[C] =

(a,b) match {

case (Nil, _) => Nil

case (_, Nil) => Nil

case (Cons(h1,t1), Cons(h2,t2)) => Cons(f(h1,h2), zipWith(t1,t2)(f))

}

Exercise 3.24

It’s good to specify some properties about these functions. For example, do you expect these
expressions to be true?

(xs append ys) startsWith xs

xs startsWith Nil

(xs append ys append zs) hasSubsequence ys

xs hasSubsequence Nil

Here is one solution where those properties do in fact hold. There’s nothing particularly bad about
this implementation, except that it’s somewhatmonolithic and easy to get wrong.Where possible, we
prefer to assemble functions like this using combinations of other functions. It makes the code more
obviously correct and easier to read and understand. Notice that in this implementation we need
special purpose logic to break out of our loops early. In Chapter 5 we’ll discuss ways of composing
functions like this from simpler components, without giving up the efficiency of having the resulting
functions work in one pass over the data.
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@annotation.tailrec

def startsWith[A](l: List[A], prefix: List[A]): Boolean = (l,prefix) match {

case (_,Nil) => true

case (Cons(h,t),Cons(h2,t2)) if h == h2 => startsWith(t, t2)

case _ => false

}

@annotation.tailrec

def hasSubsequence[A](sup: List[A], sub: List[A]): Boolean = sup match {

case Nil => sub == Nil

case _ => startsWith(sup, sub)

case Cons(h,t) => hasSubsequence(t, sub)

}

Exercise 3.25

def size[A](t: Tree[A]): Int = t match {

case Leaf(_) => 1

case Branch(l,r) => 1 + size(l) + size(r)

}

Exercise 3.26

We’re using the method max that exists on all Int values rather than an explicit if expression.

Note how similar the implementation is to size. We’ll abstract out the common pattern in a later
exercise.

def maximum(t: Tree[Int]): Int = t match {

case Leaf(n) => n

case Branch(l,r) => maximum(l) max maximum(r)

}

Exercise 3.27

Again, note how similar the implementation is to size and maximum.

def depth[A](t: Tree[A]): Int = t match {

case Leaf(_) => 0

case Branch(l,r) => 1 + (depth(l) max depth(r))

}

Exercise 3.28
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def map[A,B](t: Tree[A])(f: A => B): Tree[B] = t match {

case Leaf(a) => Leaf(f(a))

case Branch(l,r) => Branch(map(l)(f), map(r)(f))

}

Exercise 3.29

def mapViaFold[A,B](t: Tree[A])(f: A => B): Tree[B] =

fold(t)(a => Leaf(f(a)): Tree[B])(Branch(_,_))

Like foldRight for lists, fold receives a “handler” for each of the data constructors of the type,
and recursively accumulates some value using these handlers. As with foldRight, fold(t)(Leaf(_-
))(Branch(_,_)) == t, and we can use this function to implement just about any recursive function
that would otherwise be defined by pattern matching.

def fold[A,B](t: Tree[A])(f: A => B)(g: (B,B) => B): B = t match {

case Leaf(a) => f(a)

case Branch(l,r) => g(fold(l)(f)(g), fold(r)(f)(g))

}

def sizeViaFold[A](t: Tree[A]): Int =

fold(t)(a => 1)(1 + _ + _)

def maximumViaFold(t: Tree[Int]): Int =

fold(t)(a => a)(_ max _)

def depthViaFold[A](t: Tree[A]): Int =

fold(t)(a => 0)((d1,d2) => 1 + (d1 max d2))

Note the type annotation required on the expression Leaf(f(a)). Without this annotation, we get
an error like this:

type mismatch;

found : fpinscala.datastructures.Branch[B]

required: fpinscala.datastructures.Leaf[B]

fold(t)(a => Leaf(f(a)))(Branch(_,_))

^

This error is an unfortunate consequence of Scala using subtyping to encode algebraic data types.
Without the annotation, the result type of the fold gets inferred as Leaf[B] and it is then expected
that the second argument to foldwill return Leaf[B], which it doesn’t (it returns Branch[B]). Really,
we’d prefer Scala to infer Tree[B] as the result type in both cases. When working with algebraic data
types in Scala, it’s somewhat common to define helper functions that simply call the corresponding
data constructors but give the less specific result type:
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def leaf[A](a: A): Tree[A] = Leaf(a)

def branch[A](l: Tree[A], r: Tree[A]): Tree[A] = Branch(l, r)

Answers to exercises for chapter 4

Exercise 4.01

def map[B](f: A => B): Option[B] = this match {

case None => None

case Some(a) => Some(f(a))

}

def getOrElse[B>:A](default: => B): B = this match {

case None => default

case Some(a) => a

}

def flatMap[B](f: A => Option[B]): Option[B] =

map(f) getOrElse None

/*

Of course, we can also implement `flatMap` with explicit pattern matching.

*/

def flatMap_1[B](f: A => Option[B]): Option[B] = this match {

case None => None

case Some(a) => f(a)

}

def orElse[B>:A](ob: => Option[B]): Option[B] =

this map (Some(_)) getOrElse ob

/*

Again, we can implement this with explicit pattern matching.

*/

def orElse_1[B>:A](ob: => Option[B]): Option[B] = this match {

case None => ob

case _ => this

}

/*

This can also be defined in terms of `flatMap`.

*/

def filter_1(f: A => Boolean): Option[A] =

flatMap(a => if (f(a)) Some(a) else None)
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/* Or via explicit pattern matching. */

def filter(f: A => Boolean): Option[A] = this match {

case Some(a) if f(a) => this

case _ => None

}

Exercise 4.02

def variance(xs: Seq[Double]): Option[Double] =

mean(xs) flatMap (m => mean(xs.map(x => math.pow(x - m, 2))))

Exercise 4.03

A bit later in the chapter we’ll learn nicer syntax for writing functions like this.

def map2[A,B,C](a: Option[A], b: Option[B])(f: (A, B) => C): Option[C] =

a flatMap (aa => b map (bb => f(aa, bb)))

Exercise 4.04

Here’s an explicit recursive version:

def sequence[A](a: List[Option[A]]): Option[List[A]] =

a match {

case Nil => Some(Nil)

case h :: t => h flatMap (hh => sequence(t) map (hh :: _))

}

It can also be implemented using foldRight and map2. The type annotation on foldRight is needed
here; otherwise Scala wrongly infers the result type of the fold as Some[Nil.type] and reports a
type error (try it!). This is an unfortunate consequence of Scala using subtyping to encode algebraic
data types.

def sequence_1[A](a: List[Option[A]]): Option[List[A]] =

a.foldRight[Option[List[A]]](Some(Nil))((x,y) => map2(x,y)(_ :: _))

Exercise 4.05
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def traverse[A, B](a: List[A])(f: A => Option[B]): Option[List[B]] =

a match {

case Nil => Some(Nil)

case h::t => map2(f(h), traverse(t)(f))(_ :: _)

}

def traverse_1[A, B](a: List[A])(f: A => Option[B]): Option[List[B]] =

a.foldRight[Option[List[B]]](Some(Nil))((h,t) => map2(f(h),t)(_ :: _))

def sequenceViaTraverse[A](a: List[Option[A]]): Option[List[A]] =

traverse(a)(x => x)

Exercise 4.06

def map[B](f: A => B): Either[E, B] =

this match {

case Right(a) => Right(f(a))

case Left(e) => Left(e)

}

def flatMap[EE >: E, B](f: A => Either[EE, B]): Either[EE, B] =

this match {

case Left(e) => Left(e)

case Right(a) => f(a)

}

def orElse[EE >: E, AA >: A](b: => Either[EE, AA]): Either[EE, AA] =

this match {

case Left(_) => b

case Right(a) => Right(a)

}

def map2[EE >: E, B, C](b: Either[EE, B])(f: (A, B) => C):

Either[EE, C] = for { a <- this; b1 <- b } yield f(a,b1)

Exercise 4.07
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def traverse[E,A,B](es: List[A])(f: A => Either[E, B]): Either[E, List[B]] =

es match {

case Nil => Right(Nil)

case h::t => (f(h) map2 traverse(t)(f))(_ :: _)

}

def traverse_1[E,A,B](es: List[A])(f: A => Either[E, B]): Either[E, List[B]] =

es.foldRight[Either[E,List[B]]](Right(Nil))((a, b) => f(a).map2(b)(_ :: _))

def sequence[E,A](es: List[Either[E,A]]): Either[E,List[A]] =

traverse(es)(x => x)

Exercise 4.08

There are a number of variations on Option and Either. If we want to accumulate multiple errors,
a simple approach is a new data type that lets us keep a list of errors in the data constructor that
represents failures:

trait Partial[+A,+B]

case class Errors[+A](get: Seq[A]) extends Partial[A,Nothing]

case class Success[+B](get: B) extends Partial[Nothing,B]

There is a type very similar to this called Validation in the Scalaz library. You can implement map,
map2, sequence, and so on for this type in such a way that errors are accumulated when possible
(flatMap is unable to accumulate errors–can you see why?). This idea can even be generalized
further–we don’t need to accumulate failing values into a list; we can accumulate values using
any user-supplied binary function.

It’s also possible to use Either[List[E],_] directly to accumulate errors, using different implemen-
tations of helper functions like map2 and sequence.

Answers to exercises for chapter 5

Exercise 5.01

// The natural recursive solution

def toListRecursive: List[A] = this match {

case Cons(h,t) => h() :: t().toListRecursive

case _ => List()

}

The above solution will stack overflow for large streams, since it’s not tail-recursive. Here is a tail-
recursive implementation. At each step we cons onto the front of the acc list, which will result in
the reverse of the stream. Then at the end we reverse the result to get the correct order again.
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def toList: List[A] = {

@annotation.tailrec

def go(s: Stream[A], acc: List[A]): List[A] = s match {

case Cons(h,t) => go(t(), h() :: acc)

case _ => acc

}

go(this, List()).reverse

}

In order to avoid the reverse at the end, we could write it using a mutable list buffer and an explicit
loop instead. Note that the mutable list buffer never escapes our toList method, so this function is
still pure.

def toListFast: List[A] = {

val buf = new collection.mutable.ListBuffer[A]

@annotation.tailrec

def go(s: Stream[A]): List[A] = s match {

case Cons(h,t) =>

buf += h()

go(t())

case _ => buf.toList

}

go(this)

}

Exercise 5.02

take first checks if n==0. In that case we need not look at the stream at all.

def take(n: Int): Stream[A] = this match {

case Cons(h, t) if n > 1 => cons(h(), t().take(n - 1))

case Cons(h, _) if n == 1 => cons(h(), empty)

case _ => empty

}

Unlike take, drop is not incremental. That is, it doesn’t generate the answer lazily. It must traverse
the first n elements of the stream eagerly.
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@annotation.tailrec

final def drop(n: Int): Stream[A] = this match {

case Cons(_, t) if n > 0 => t().drop(n - 1)

case _ => this

}

Exercise 5.03

It’s a common Scala style to write method calls without . notation, as in t() takeWhile f.

def takeWhile(f: A => Boolean): Stream[A] = this match {

case Cons(h,t) if f(h()) => cons(h(), t() takeWhile f)

case _ => empty

}

Exercise 5.04

Since && is non-strict in its second argument, this terminates the traversal as soon as a nonmatching
element is found.

def forAll(f: A => Boolean): Boolean =

foldRight(true)((a,b) => f(a) && b)

Exercise 5.05

def takeWhile_1(f: A => Boolean): Stream[A] =

foldRight(empty[A])((h,t) =>

if (f(h)) cons(h,t)

else empty)

Exercise 5.06

def headOption: Option[A] =

foldRight(None: Option[A])((h,_) => Some(h))

Exercise 5.07
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def map[B](f: A => B): Stream[B] =

foldRight(empty[B])((h,t) => cons(f(h), t))

def filter(f: A => Boolean): Stream[A] =

foldRight(empty[A])((h,t) =>

if (f(h)) cons(h, t)

else t)

def append[B>:A](s: => Stream[B]): Stream[B] =

foldRight(s)((h,t) => cons(h,t))

def flatMap[B](f: A => Stream[B]): Stream[B] =

foldRight(empty[B])((h,t) => f(h) append t)

Exercise 5.08

// This is more efficient than `cons(a, constant(a))` since it's just

// one object referencing itself.

def constant[A](a: A): Stream[A] = {

lazy val tail: Stream[A] = Cons(() => a, () => tail)

tail

}

Exercise 5.09

def from(n: Int): Stream[Int] =

cons(n, from(n+1))

Exercise 5.10

val fibs = {

def go(f0: Int, f1: Int): Stream[Int] =

cons(f0, go(f1, f0+f1))

go(0, 1)

}

Exercise 5.11
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def unfold[A, S](z: S)(f: S => Option[(A, S)]): Stream[A] =

f(z) match {

case Some((h,s)) => cons(h, unfold(s)(f))

case None => empty

}

Exercise 5.12

Scala provides shorter syntax when the first action of a function literal is to match on an expression.
The function passed to unfold in fibsViaUnfold is equivalent to p => p match { case (f0,f1)

=> ... }, but we avoid having to choose a name for p, only to pattern match on it.

val fibsViaUnfold =

unfold((0,1)) { case (f0,f1) => Some((f0,(f1,f0+f1))) }

def fromViaUnfold(n: Int) =

unfold(n)(n => Some((n,n+1)))

def constantViaUnfold[A](a: A) =

unfold(a)(_ => Some((a,a)))

// could also of course be implemented as constant(1)

val onesViaUnfold = unfold(1)(_ => Some((1,1)))

Exercise 5.13

def mapViaUnfold[B](f: A => B): Stream[B] =

unfold(this) {

case Cons(h,t) => Some((f(h()), t()))

case _ => None

}

def takeViaUnfold(n: Int): Stream[A] =

unfold((this,n)) {

case (Cons(h,t), 1) => Some((h(), (empty, 0)))

case (Cons(h,t), n) if n > 1 => Some((h(), (t(), n-1)))

case _ => None

}

def takeWhileViaUnfold(f: A => Boolean): Stream[A] =

unfold(this) {

case Cons(h,t) if f(h()) => Some((h(), t()))

case _ => None

}
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def zipWith[B,C](s2: Stream[B])(f: (A,B) => C): Stream[C] =

unfold((this, s2)) {

case (Cons(h1,t1), Cons(h2,t2)) =>

Some((f(h1(), h2()), (t1(), t2())))

case _ => None

}

// special case of `zip`

def zip[B](s2: Stream[B]): Stream[(A,B)] =

zipWith(s2)((_,_))

def zipAll[B](s2: Stream[B]): Stream[(Option[A],Option[B])] =

zipWithAll(s2)((_,_))

def zipWithAll[B, C](s2: Stream[B])(f: (Option[A], Option[B]) => C): Stream[C] =

Stream.unfold((this, s2)) {

case (Empty, Empty) => None

case (Cons(h, t), Empty) => Some(f(Some(h()), Option.empty[B]) -> (t(), empty[B]))

case (Empty, Cons(h, t)) => Some(f(Option.empty[A], Some(h())) -> (empty[A] -> t()))

case (Cons(h1, t1), Cons(h2, t2)) => Some(f(Some(h1()), Some(h2())) -> (t1() -> t2()))

}

Exercise 5.14

s startsWith s2 when corresponding elements of s and s2 are all equal, until the point that s2
is exhausted. If s is exhausted first, or we find an element that doesn’t match, we terminate early.
Using non-strictness, we can compose these three separate logical steps–the zipping, the termination
when the second stream is exhausted, and the termination if a nonmatching element is found or the
first stream is exhausted.

def startsWith[A](s: Stream[A]): Boolean =

zipAll(s).takeWhile(!_._2.isEmpty) forAll {

case (h,h2) => h == h2

}

Exercise 5.15

The last element of tails is always the empty Stream, so we handle this as a special case, by
appending it to the output.
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def tails: Stream[Stream[A]] =

unfold(this) {

case Empty => None

case s => Some((s, s drop 1))

} append Stream(empty)

Exercise 5.16

The function can’t be implemented using unfold, since unfold generates elements of the Stream

from left to right. It can be implemented using foldRight though.

The implementation is just a foldRight that keeps the accumulated value and the stream of
intermediate results, which we cons onto during each iteration. When writing folds, it’s common
to have more state in the fold than is needed to compute the result. Here, we simply extract the
accumulated list once finished.

def scanRight[B](z: B)(f: (A, => B) => B): Stream[B] =

foldRight((z, Stream(z)))((a, p0) => {

// p0 is passed by-name and used in by-name args in f and cons.

// So use lazy val to ensure only one evaluation...

lazy val p1 = p0

val b2 = f(a, p1._1)

(b2, cons(b2, p1._2))

})._2

Answers to exercises for chapter 6

Exercise 6.01

We need to be quite careful not to skew the generator. Since Int.Minvalue is 1 smaller than
-(Int.MaxValue), it suffices to increment the negative numbers by 1 and make them positive. This
maps Int.MinValue to Int.MaxValue and -1 to 0.

def nonNegativeInt(rng: RNG): (Int, RNG) = {

val (i, r) = rng.nextInt

(if (i < 0) -(i + 1) else i, r)

}

Exercise 6.02

We generate an integer >= 0 and divide it by one higher than the maximum. This is just one possible
solution.
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def double(rng: RNG): (Double, RNG) = {

val (i, r) = nonNegativeInt(rng)

(i / (Int.MaxValue.toDouble + 1), r)

}

Exercise 6.03

def intDouble(rng: RNG): ((Int, Double), RNG) = {

val (i, r1) = rng.nextInt

val (d, r2) = double(r1)

((i, d), r2)

}

def doubleInt(rng: RNG): ((Double, Int), RNG) = {

val ((i, d), r) = intDouble(rng)

((d, i), r)

}

def double3(rng: RNG): ((Double, Double, Double), RNG) = {

val (d1, r1) = double(rng)

val (d2, r2) = double(r1)

val (d3, r3) = double(r2)

((d1, d2, d3), r3)

}

There is something terribly repetitive about passing the RNG along every time. What could we do
to eliminate some of this duplication of effort?

Exercise 6.04

// A simple recursive solution

def ints(count: Int)(rng: RNG): (List[Int], RNG) =

if (count == 0)

(List(), rng)

else {

val (x, r1) = rng.nextInt

val (xs, r2) = ints(count - 1)(r1)

(x :: xs, r2)

}

// A tail-recursive solution

def ints2(count: Int)(rng: RNG): (List[Int], RNG) = {

def go(count: Int, r: RNG, xs: List[Int]): (List[Int], RNG) =

if (count == 0)
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(xs, r)

else {

val (x, r2) = r.nextInt

go(count - 1, r2, x :: xs)

}

go(count, rng, List())

}

Exercise 6.05

val _double: Rand[Double] =

map(nonNegativeInt)(_ / (Int.MaxValue.toDouble + 1))

Exercise 6.06

This implementation of map2 passes the initial RNG to the first argument and the resulting RNG to the
second argument. It’s not necessarily wrong to do this the other way around, since the results are
random anyway. We could even pass the initial RNG to both f and g, but that might have unexpected
results. E.g. if both arguments are RNG.int then we would always get two of the same Int in the
result. When implementing functions like this, it’s important to consider how we would test them
for correctness.

def map2[A,B,C](ra: Rand[A], rb: Rand[B])(f: (A, B) => C): Rand[C] =

rng => {

val (a, r1) = ra(rng)

val (b, r2) = rb(r1)

(f(a, b), r2)

}

Exercise 6.07

In sequence, the base case of the fold is a unit action that returns the empty list. At each step in the
fold, we accumulate in acc and f is the current element in the list. map2(f, acc)(_ :: _) results in a
value of type Rand[List[A]]Wemap over that to prepend (cons) the element onto the accumulated
list.

We are using foldRight. If we used foldLeft then the values in the resulting list would appear in
reverse order. It would be arguably better to use foldLeft followed by reverse. What do you think?

def sequence[A](fs: List[Rand[A]]): Rand[List[A]] =

fs.foldRight(unit(List[A]()))((f, acc) => map2(f, acc)(_ :: _))

It’s interesting that we never actually need to talk about the RNG value in sequence. This is a strong
hint that we could make this function polymorphic in that type.
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def _ints(count: Int): Rand[List[Int]] =

sequence(List.fill(count)(int))

Exercise 6.08

def flatMap[A,B](f: Rand[A])(g: A => Rand[B]): Rand[B] =

rng => {

val (a, r1) = f(rng)

g(a)(r1) // We pass the new state along

}

def nonNegativeLessThan(n: Int): Rand[Int] = {

flatMap(nonNegativeInt) { i =>

val mod = i % n

if (i + (n-1) - mod >= 0) unit(mod) else nonNegativeLessThan(n)

}

}

Exercise 6.09

def _map[A,B](s: Rand[A])(f: A => B): Rand[B] =

flatMap(s)(a => unit(f(a)))

def _map2[A,B,C](ra: Rand[A], rb: Rand[B])(f: (A, B) => C): Rand[C] =

flatMap(ra)(a => map(rb)(b => f(a, b)))

Exercise 6.10

case class State[S, +A](run: S => (A, S)) {

def map[B](f: A => B): State[S, B] =

flatMap(a => unit(f(a)))

def map2[B,C](sb: State[S, B])(f: (A, B) => C): State[S, C] =

flatMap(a => sb.map(b => f(a, b)))

def flatMap[B](f: A => State[S, B]): State[S, B] = State(s => {

val (a, s1) = run(s)

f(a).run(s1)

})

}

object State {

def unit[S, A](a: A): State[S, A] =

State(s => (a, s))
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// The idiomatic solution is expressed via foldRight

def sequenceViaFoldRight[S,A](sas: List[State[S, A]]): State[S, List[A]] =

sas.foldRight(unit[S, List[A]](List()))((f, acc) => f.map2(acc)(_ :: _))

// This implementation uses a loop internally and is the same recursion

// pattern as a left fold. It is quite common with left folds to build

// up a list in reverse order, then reverse it at the end.

// (We could also use a collection.mutable.ListBuffer internally.)

def sequence[S, A](sas: List[State[S, A]]): State[S, List[A]] = {

def go(s: S, actions: List[State[S,A]], acc: List[A]): (List[A],S) =

actions match {

case Nil => (acc.reverse,s)

case h :: t => h.run(s) match { case (a,s2) => go(s2, t, a :: acc) }

}

State((s: S) => go(s,sas,List()))

}

// We can also write the loop using a left fold. This is tail recursive like

// the previous solution, but it reverses the list _before_ folding it instead

// of after. You might think that this is slower than the `foldRight` solution

// since it walks over the list twice, but it's actually faster! The

// `foldRight` solution technically has to also walk the list twice, since it

// has to unravel the call stack, not being tail recursive. And the call stack

// will be as tall as the list is long.

def sequenceViaFoldLeft[S,A](l: List[State[S, A]]): State[S, List[A]] =

l.reverse.foldLeft(unit[S, List[A]](List())) {

(acc, f) => f.map2(acc)( _ :: _ )

}

def modify[S](f: S => S): State[S, Unit] = for {

s <- get // Gets the current state and assigns it to `s`.

_ <- set(f(s)) // Sets the new state to `f` applied to `s`.

} yield ()

def get[S]: State[S, S] = State(s => (s, s))

def set[S](s: S): State[S, Unit] = State(_ => ((), s))

}

Exercise 6.11
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sealed trait Input

case object Coin extends Input

case object Turn extends Input

case class Machine(locked: Boolean, candies: Int, coins: Int)

object Candy {

def simulateMachine(inputs: List[Input]): State[Machine, (Int, Int)] = for {

_ <- sequence(inputs.map(i => modify((s: Machine) => (i, s) match {

case (_, Machine(_, 0, _)) => s

case (Coin, Machine(false, _, _)) => s

case (Turn, Machine(true, _, _)) => s

case (Coin, Machine(true, candy, coin)) =>

Machine(false, candy, coin + 1)

case (Turn, Machine(false, candy, coin)) =>

Machine(true, candy - 1, coin)

})))

s <- get

} yield (s.coins, s.candies)

}

Answers to exercises for chapter 7

Exercise 7.01

/* def map2[A,B,C](a: Par[A], b: Par[B])(f: (A,B) => C): Par[C] */

Exercise 7.02

Keep reading - we choose a representation for Par later in the chapter.

Exercise 7.03
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/* This version respects timeouts. See `Map2Future` below. */

def map2[A,B,C](a: Par[A], b: Par[B])(f: (A,B) => C): Par[C] =

es => {

val (af, bf) = (a(es), b(es))

Map2Future(af, bf, f)

}

/*

Note: this implementation will not prevent repeated evaluation if multiple

threads call `get` in parallel. We could prevent this using synchronization,

but it isn't needed for our purposes here (also, repeated evaluation of pure

values won't affect results).

*/

case class Map2Future[A,B,C](a: Future[A], b: Future[B],

f: (A,B) => C) extends Future[C] {

@volatile var cache: Option[C] = None

def isDone = cache.isDefined

def isCancelled = a.isCancelled || b.isCancelled

def cancel(evenIfRunning: Boolean) =

a.cancel(evenIfRunning) || b.cancel(evenIfRunning)

def get = compute(Long.MaxValue)

def get(timeout: Long, units: TimeUnit): C =

compute(TimeUnit.MILLISECONDS.convert(timeout, units))

private def compute(timeoutMs: Long): C = cache match {

case Some(c) => c

case None =>

val start = System.currentTimeMillis

val ar = a.get(timeoutMs, TimeUnit.MILLISECONDS)

val stop = System.currentTimeMillis; val at = stop-start

val br = b.get(timeoutMs - at, TimeUnit.MILLISECONDS)

val ret = f(ar, br)

cache = Some(ret)

ret

}

}

Exercise 7.04

def asyncF[A,B](f: A => B): A => Par[B] =

a => lazyUnit(f(a))

Exercise 7.05
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def sequence_simple[A](l: List[Par[A]]): Par[List[A]] =

l.foldRight[Par[List[A]]](unit(List()))((h,t) => map2(h,t)(_ :: _))

// This implementation forks the recursive step off to a new logical thread,

// making it effectively tail-recursive. However, we are constructing

// a right-nested parallel program, and we can get better performance by

// dividing the list in half, and running both halves in parallel.

// See `sequenceBalanced` below.

def sequenceRight[A](as: List[Par[A]]): Par[List[A]] =

as match {

case Nil => unit(Nil)

case h :: t => map2(h, fork(sequence(t)))(_ :: _)

}

// We define `sequenceBalanced` using `IndexedSeq`, which provides an

// efficient function for splitting the sequence in half.

def sequenceBalanced[A](as: IndexedSeq[Par[A]]): Par[IndexedSeq[A]] = fork {

if (as.isEmpty) unit(Vector())

else if (as.length == 1) map(as.head)(a => Vector(a))

else {

val (l,r) = as.splitAt(as.length/2)

map2(sequenceBalanced(l), sequenceBalanced(r))(_ ++ _)

}

}

def sequence[A](as: List[Par[A]]): Par[List[A]] =

map(sequenceBalanced(as.toIndexedSeq))(_.toList)

Exercise 7.06

def parFilter[A](l: List[A])(f: A => Boolean): Par[List[A]] = {

val pars: List[Par[List[A]]] =

l map (asyncF((a: A) => if (f(a)) List(a) else List()))

// flatten is a convenience method on `List` for concatenating a list of lists

map(sequence(pars))(_.flatten)

}

Exercise 7.07

See https://github.com/quchen/articles/blob/master/second_functor_law.md

Also https://gist.github.com/pchiusano/444de1f222f1ceb09596

Exercise 7.08

Keep reading. The issue is explained in the next paragraph.
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Exercise 7.09

For a thread pool of size 2, fork(fork(fork(x))) will deadlock, and so on. Another, perhaps more
interesting example is fork(map2(fork(x), fork(y))). In this case, the outer task is submitted first
and occupies a thread waiting for both fork(x) and fork(y). The fork(x) and fork(y) tasks are
submitted and run in parallel, except that only one thread is available, resulting in deadlock.

Exercise 7.10

We give a fully fleshed-out solution in the Task data type in the code for Chapter 13.

Exercise 7.11

def choiceN[A](n: Par[Int])(choices: List[Par[A]]): Par[A] =

es => {

val ind = run(es)(n).get // Full source files

run(es)(choices(ind))

}

def choiceViaChoiceN[A](a: Par[Boolean])(ifTrue: Par[A], ifFalse: Par[A]): Par[A] =

choiceN(map(a)(b => if (b) 0 else 1))(List(ifTrue, ifFalse))

Exercise 7.12

def choiceMap[K,V](key: Par[K])(choices: Map[K,Par[V]]): Par[V] =

es => {

val k = run(es)(key).get

run(es)(choices(k))

}

Exercise 7.13

def chooser[A,B](p: Par[A])(choices: A => Par[B]): Par[B] =

es => {

val k = run(es)(p).get

run(es)(choices(k))

}

/* `chooser` is usually called `flatMap` or `bind`. */

def flatMap[A,B](p: Par[A])(choices: A => Par[B]): Par[B] =

es => {

val k = run(es)(p).get

run(es)(choices(k))



Answers to exercises 94

}

def choiceViaFlatMap[A](p: Par[Boolean])(f: Par[A], t: Par[A]): Par[A] =

flatMap(p)(b => if (b) t else f)

def choiceNViaFlatMap[A](p: Par[Int])(choices: List[Par[A]]): Par[A] =

flatMap(p)(i => choices(i))

Exercise 7.14

// see nonblocking implementation in `Nonblocking.scala`

def join[A](a: Par[Par[A]]): Par[A] =

es => run(es)(run(es)(a).get())

def joinViaFlatMap[A](a: Par[Par[A]]): Par[A] =

flatMap(a)(x => x)

def flatMapViaJoin[A,B](p: Par[A])(f: A => Par[B]): Par[B] =

join(map(p)(f))

Exercise 7.15

def flatMap[B](f: A => Par[B]): Par[B] =

Par.flatMap(p)(f)

def map[B](f: A => B): Par[B] =

Par.map(p)(f)

def map2[B,C](p2: Par[B])(f: (A,B) => C): Par[C] =

Par.map2(p,p2)(f)

def zip[B](p2: Par[B]): Par[(A,B)] =

p.map2(p2)((_,_))

Exercise 7.16
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def flatMap[B](f: A => Par[B]): Par[B] =

Par.flatMap(p)(f)

def map[B](f: A => B): Par[B] =

Par.map(p)(f)

def map2[B,C](p2: Par[B])(f: (A,B) => C): Par[C] =

Par.map2(p,p2)(f)

def zip[B](p2: Par[B]): Par[(A,B)] =

p.map2(p2)((_,_))

Exercise 7.17

This implementation is not safe for execution on bounded thread pools, and it also does not preserve
timeouts. Can you see why? You may wish to try implementing a nonblocking version like was done
for fork.

def join[A](a: Par[Par[A]]): Par[A] =

es => a(es).get.apply(es)

def joinViaFlatMap[A](a: Par[Par[A]]): Par[A] =

flatMap(a)(a => a)

def flatMapViaJoin[A,B](p: Par[A])(f: A => Par[B]): Par[B] =

join(map(p)(f))

Answers to exercises for chapter 8

Exercise 8.01

Here are a few properties:

• The sum of the empty list is 0.
• The sum of a list whose elements are all equal to x is just the list’s length multiplied by x. We
might express this as sum(List.fill(n)(x)) == n*x

• For any list, l, sum(l) == sum(l.reverse), since addition is commutative.
• Given a list, List(x,y,z,p,q), sum(List(x,y,z,p,q)) == sum(List(x,y)) + sum(List(z,p,q)),
since addition is associative. More generally, we can partition a list into two subsequences
whose sum is equal to the sum of the overall list.

• The sum of 1,2,3…n is n*(n+1)/2.
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Exercise 8.02

• The max of a single element list is equal to that element.
• The max of a list is greater than or equal to all elements of the list.
• The max of a list is an element of that list.
• The max of the empty list is unspecified and should throw an error or return None.

Exercise 8.03

/* We can refer to the enclosing `Prop` instance with `Prop.this` */

def &&(p: Prop): Prop = new Prop {

def check = Prop.this.check && p.check

}

Exercise 8.04

def choose(start: Int, stopExclusive: Int): Gen[Int] =

Gen(State(RNG.nonNegativeInt).map(n => start + n % (stopExclusive-start)))

/* We could write this as an explicit state action, but this is far less

convenient, since it requires us to manually thread the `RNG` through the

computation. */

def choose2(start: Int, stopExclusive: Int): Gen[Int] =

Gen(State(rng => RNG.nonNegativeInt(rng) match {

case (n,rng2) => (start + n % (stopExclusive-start), rng2)

}))

Exercise 8.05

def unit[A](a: => A): Gen[A] =

Gen(State.unit(a))

def boolean: Gen[Boolean] =

Gen(State(RNG.boolean))

def choose(start: Int, stopExclusive: Int): Gen[Int] =

Gen(State(RNG.nonNegativeInt).map(n => start + n % (stopExclusive-start)))

def listOfN[A](n: Int, g: Gen[A]): Gen[List[A]] =

Gen(State.sequence(List.fill(n)(g.sample)))

Exercise 8.06

These methods are defined in the Gen class:
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def flatMap[B](f: A => Gen[B]): Gen[B] =

Gen(sample.flatMap(a => f(a).sample))

/* A method alias for the function we wrote earlier. */

def listOfN(size: Int): Gen[List[A]] =

Gen.listOfN(size, this)

/* A version of `listOfN` that generates the size to use dynamically. */

def listOfN(size: Gen[Int]): Gen[List[A]] =

size flatMap (n => this.listOfN(n))

Exercise 8.07

def union[A](g1: Gen[A], g2: Gen[A]): Gen[A] =

boolean.flatMap(b => if (b) g1 else g2)

Exercise 8.08

def weighted[A](g1: (Gen[A],Double), g2: (Gen[A],Double)): Gen[A] = {

/* The probability we should pull from `g1`. */

val g1Threshold = g1._2.abs / (g1._2.abs + g2._2.abs)

Gen(State(RNG.double).flatMap(d =>

if (d < g1Threshold) g1._1.sample else g2._1.sample))

}

Exercise 8.09

def &&(p: Prop) = Prop {

(max,n,rng) => run(max,n,rng) match {

case Passed => p.run(max, n, rng)

case x => x

}

}

def ||(p: Prop) = Prop {

(max,n,rng) => run(max,n,rng) match {

// In case of failure, run the other prop.

case Falsified(msg, _) => p.tag(msg).run(max,n,rng)

case x => x

}

}

/* This is rather simplistic - in the event of failure, we simply prepend
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* the given message on a newline in front of the existing message.

*/

def tag(msg: String) = Prop {

(max,n,rng) => run(max,n,rng) match {

case Falsified(e, c) => Falsified(msg + "\n" + e, c)

case x => x

}

}

Exercise 8.10

def unsized: SGen[A] = SGen(_ => this)

Exercise 8.11

case class SGen[+A](g: Int => Gen[A]) {

def apply(n: Int): Gen[A] = g(n)

def map[B](f: A => B): SGen[B] =

SGen(g andThen (_ map f))

def flatMap[B](f: A => Gen[B]): SGen[B] =

SGen(g andThen (_ flatMap f))

def **[B](s2: SGen[B]): SGen[(A,B)] =

SGen(n => apply(n) ** s2(n))

}

Exercise 8.12

def listOf[A](g: Gen[A]): SGen[List[A]] =

SGen(n => g.listOfN(n))

Exercise 8.13
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def listOf1[A](g: Gen[A]): SGen[List[A]] =

SGen(n => g.listOfN(n max 1))

val maxProp1 = forAll(listOf1(smallInt)) { l =>

val max = l.max

!l.exists(_ > max) // No value greater than `max` should exist in `l`

}

Exercise 8.14

val sortedProp = forAll(listOf(smallInt)) { ns =>

val nss = ns.sorted

// We specify that every sorted list is either empty, has one element,

// or has no two consecutive elements `(a,b)` such that `a` is greater than `b`.

(ns.isEmpty || nss.tail.isEmpty || !ns.zip(ns.tail).exists {

case (a,b) => a > b

})

// Also, the sorted list should have all the elements of the input list,

&& !ns.exists(!nss.contains(_))

// and it should have no elements not in the input list.

&& !nss.exists(!ns.contains(_))

}

Exercise 8.15

A detailed answer is to be found in the file Exhaustive.scala in the code accompanying this chapter.

Exercise 8.16

/* A `Gen[Par[Int]]` generated from a list summation that spawns a new parallel

* computation for each element of the input list summed to produce the final

* result. This is not the most compelling example, but it provides at least some

* variation in structure to use for testing.

*/

val pint2: Gen[Par[Int]] = choose(-100,100).listOfN(choose(0,20)).map(l =>

l.foldLeft(Par.unit(0))((p,i) =>

Par.fork { Par.map2(p, Par.unit(i))(_ + _) }))

Exercise 8.17
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val forkProp = Prop.forAllPar(pint2)(i => equal(Par.fork(i), i)) tag "fork"

Exercise 8.18

• l.takeWhile(f) ++ l.dropWhile(f) == l

• We want to enforce that takeWhile returns the longest prefix whose elements satisfy the
predicate. There are various ways to state this, but the general idea is that the remaining list,
if non-empty, should start with an element that does not satisfy the predicate.

Answers to exercises for chapter 9

Exercise 9.01

def map2[A,B,C](p: Parser[A], p2: Parser[B])(

f: (A,B) => C): Parser[C] =

map(product(p, p2))(f.tupled)

def many1[A](p: Parser[A]): Parser[List[A]] =

map2(p, many(p))(_ :: _)

Exercise 9.02

product is associative. These two expressions are “roughly” equal:

(a ** b) ** c

a ** (b ** c)

The only difference is how the pairs are nested. The (a ** b) ** c parser returns an ((A,B), C),
whereas the a ** (b ** c) returns an (A, (B,C)). We can define functions unbiasL and unbiasR

to convert these nested tuples to flat 3-tuples:

def unbiasL[A,B,C](p: ((A,B), C)): (A,B,C) = (p._1._1, p._1._2, p._2)

def unbiasR[A,B,C](p: (A, (B,C))): (A,B,C) = (p._1, p._2._1, p._2._2)

With these, we can now state the associativity property:

(a ** b) ** c map (unbiasL) == a ** (b ** c) map (unbiasR)

We’ll sometimes just use ∼= when there is an obvious bijection between the two sides:
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(a ** b) ** c ~= a ** (b ** c)

map and product also have an interesting relationship–we can map either before or after taking the
product of two parsers, without affecting the behavior:

a.map(f) ** b.map(g) == (a ** b) map { case (a,b) => (f(a), g(b)) }

For instance, if a and bwere both Parser[String], and f and g both computed the length of a string,
it doesn’t matter if we map over the result of a to compute its length, or whether we do that after
the product.

See chapter 12 for more discussion of these laws.

Exercise 9.03

def many[A](p: Parser[A]): Parser[List[A]] =

map2(p, many(p))(_ :: _) or succeed(List())

Exercise 9.04

def listOfN[A](n: Int, p: Parser[A]): Parser[List[A]] =

if (n <= 0) succeed(List())

else map2(p, listOfN(n-1, p))(_ :: _)

Exercise 9.05

We could introduce a combinator, wrap:

def wrap[A](p: => Parser[A]): Parser[A]

Then define many as:

def many[A](p: Parser[A]): Parser[List[A]] =

map2(p, wrap(many(p)))(_ :: _) or succeed(List())

In the parallelism chapter, we were particularly interested in avoiding having Par objects that took
as much time and space to build as the corresponding serial computation, and the delay combinator
let us control this more carefully. Here, this isn’t as much of a concern, and having to think carefully
each time we map2 to decide whether we need to call wrap seems like unnecessary friction for users
of the API.

Exercise 9.06

We’ll just have this parser return the number of 'a' characters read. Note that we can declare a
normal value inside a for-comprehension.
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for {

digit <- "[0-9]+".r

val n = digit.toInt

// we really should catch exceptions thrown by toInt

// and convert to parse failure

_ <- listOfN(n, char('a'))

} yield n

Exercise 9.07

These can be implemented using a for-comprehension, which delegates to the flatMap and map

implementations we’ve provided on ParserOps, or they can be implemented in terms of these
functions directly.

def product[A,B](p: Parser[A], p2: => Parser[B]): Parser[(A,B)] =

flatMap(p)(a => map(p2)(b => (a,b)))

def map2[A,B,C](p: Parser[A], p2: => Parser[B])(f: (A,B) => C): Parser[C] =

for { a <- p; b <- p2 } yield f(a,b)

Exercise 9.08

def map[A,B](p: Parser[A])(f: A => B): Parser[B] = p.flatMap(a => succeed(f(a)))

Exercise 9.09

See full implementation in JSON.scala²¹³.

Exercise 9.10

The next section works through a possible design in detail.

Exercise 9.11

²¹³https://github.com/fpinscala/fpinscala/blob/master/answers/src/main/scala/fpinscala/parsing/JSON.scala

https://github.com/fpinscala/fpinscala/blob/master/answers/src/main/scala/fpinscala/parsing/JSON.scala
https://github.com/fpinscala/fpinscala/blob/master/answers/src/main/scala/fpinscala/parsing/JSON.scala
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/**

* In the event of an error, returns the error that occurred after consuming

* the most number of characters.

*/

def furthest[A](p: Parser[A]): Parser[A]

/** In the event of an error, returns the error that occurred most recently. */

def latest[A](p: Parser[A]): Parser[A]

Exercise 9.12

Keep reading for a discussion

Exercise 9.13

There is a completed reference implementation of Parsers in parsing/instances/Reference.scala²¹⁴,
though we recommend you continue reading before looking at that, since we’re still refining the
representation.

Exercise 9.14

Again, see Reference.scala for a fully worked implementation.

Exercise 9.15

Again see the reference implementation.

Exercise 9.16

case class ParseError(stack: List[(Location,String)] = List()) {

def push(loc: Location, msg: String): ParseError =

copy(stack = (loc,msg) :: stack)

def label[A](s: String): ParseError =

ParseError(latestLoc.map((_,s)).toList)

def latest: Option[(Location,String)] =

stack.lastOption

def latestLoc: Option[Location] =

latest map (_._1)

²¹⁴https://github.com/fpinscala/fpinscala/blob/master/answers/src/main/scala/fpinscala/parsing/instances/Reference.scala

https://github.com/fpinscala/fpinscala/blob/master/answers/src/main/scala/fpinscala/parsing/instances/Reference.scala
https://github.com/fpinscala/fpinscala/blob/master/answers/src/main/scala/fpinscala/parsing/instances/Reference.scala
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/**

Display collapsed error stack - any adjacent stack elements with the

same location are combined on one line. For the bottommost error, we

display the full line, with a caret pointing to the column of the error.

Example:

1.1 file 'companies.json'; array

5.1 object

5.2 key-value

5.10 ':'

{ "MSFT" ; 24,

^

*/

override def toString =

if (stack.isEmpty) "no error message"

else {

val collapsed = collapseStack(stack)

val context =

collapsed.lastOption.map("\n\n" + _._1.currentLine).getOrElse("") +

collapsed.lastOption.map("\n" + _._1.columnCaret).getOrElse("")

collapsed.map {

case (loc,msg) => loc.line.toString + "." + loc.col + " " + msg

}.mkString("\n") + context

}

/* Builds a collapsed version of the given error stack -

* messages at the same location have their messages merged,

* separated by semicolons */

def collapseStack(s: List[(Location,String)]): List[(Location,String)] =

s.groupBy(_._1).

mapValues(_.map(_._2).mkString("; ")).

toList.sortBy(_._1.offset)

def formatLoc(l: Location): String = l.line + "." + l.col

}

Exercise 9.17

See a fully worked implementation in instances/Sliceable.scala in the answers.

Exercise 9.18

We’ll just give a sketch here. The basic idea is to add an additional field to ParseError:
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case class ParseError(stack: List[(Location,String)] = List(),

otherFailures: List[ParseError] = List()) {

def addFailure(e: ParseError): ParseError =

this.copy(otherFailures = e :: this.otherFailures)

...

}

We then need to make sure we populate this in the implementation of or

def or[A](p: Parser[A], p2: => Parser[A]): Parser[A] =

s => p(s) match {

case Failure(e,false) => p2(s).mapError(_.addFailure(e))

case r => r // committed failure or success skips running `p2`

}

Of course, we have to decide how to print a ParseError for human consumptionWe also can expose
combinators for selecting which error(s) get reported in the event that a chain of a | b | c fails–we
might choose to collect up all the errors for each of the three parsers, or perhaps only show the
parser that got the furthest in the input before failing, etc

Answers to exercises for chapter 10

Exercise 10.01

val intAddition: Monoid[Int] = new Monoid[Int] {

def op(x: Int, y: Int) = x + y

val zero = 0

}

val intMultiplication: Monoid[Int] = new Monoid[Int] {

def op(x: Int, y: Int) = x * y

val zero = 1

}

val booleanOr: Monoid[Boolean] = new Monoid[Boolean] {

def op(x: Boolean, y: Boolean) = x || y

val zero = false

}

val booleanAnd: Monoid[Boolean] = new Monoid[Boolean] {

def op(x: Boolean, y: Boolean) = x && y

val zero = true

}



Answers to exercises 106

Exercise 10.02

Notice that we have a choice in how we implement op. We can compose the options in either
order. Both of those implementations satisfy the monoid laws, but they are not equivalent. This
is true in general–that is, every monoid has a dual where the op combines things in the opposite
order. Monoids like booleanOr and intAddition are equivalent to their duals because their op is
commutative as well as associative.

def optionMonoid[A]: Monoid[Option[A]] = new Monoid[Option[A]] {

def op(x: Option[A], y: Option[A]) = x orElse y

val zero = None

}

// We can get the dual of any monoid just by flipping the `op`.

def dual[A](m: Monoid[A]): Monoid[A] = new Monoid[A] {

def op(x: A, y: A): A = m.op(y, x)

val zero = m.zero

}

// Now we can have both monoids on hand:

def firstOptionMonoid[A]: Monoid[Option[A]] = optionMonoid[A]

def lastOptionMonoid[A]: Monoid[Option[A]] = dual(firstOptionMonoid)

Exercise 10.03

There is a choice of implementation here as well. Do we implement it as f compose g or f andThen

g?We have to pick one.We can then get the other one using the dual construct (see previous answer).

def endoMonoid[A]: Monoid[A => A] = new Monoid[A => A] {

def op(f: A => A, g: A => A) = f compose g

val zero = (a: A) => a

}

Exercise 10.04
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import fpinscala.testing._

import Prop._

def monoidLaws[A](m: Monoid[A], gen: Gen[A]): Prop =

// Associativity

forAll(for {

x <- gen

y <- gen

z <- gen

} yield (x, y, z))(p =>

m.op(p._1, m.op(p._2, p._3)) == m.op(m.op(p._1, p._2), p._3)) &&

// Identity

forAll(gen)((a: A) =>

m.op(a, m.zero) == a && m.op(m.zero, a) == a)

Exercise 10.05

Notice that this function does not require the use of map at all.

def foldMap[A, B](as: List[A], m: Monoid[B])(f: A => B): B =

as.foldLeft(m.zero)((b, a) => m.op(b, f(a)))

Exercise 10.06

The function type (A, B) => B, when curried, is A => (B => B). And of course, B => B is a monoid
for any B (via function composition).

def foldRight[A, B](as: List[A])(z: B)(f: (A, B) => B): B =

foldMap(as, endoMonoid[B])(f.curried)(z)

Folding to the left is the same except we flip the arguments to the function f to put the B on the
correct side. Then we have to also “flip” the monoid so that it operates from left to right.

def foldLeft[A, B](as: List[A])(z: B)(f: (B, A) => B): B =

foldMap(as, dual(endoMonoid[B]))(a => b => f(b, a))(z)

Exercise 10.07
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def foldMapV[A, B](as: IndexedSeq[A], m: Monoid[B])(f: A => B): B =

if (as.length == 0)

m.zero

else if (as.length == 1)

f(as(0))

else {

val (l, r) = as.splitAt(as.length / 2)

m.op(foldMapV(l, m)(f), foldMapV(r, m)(f))

}

Exercise 10.08

// This ability to 'lift' a monoid any monoid to operate within

// some context (here `Par`) is something we'll discuss more in

// chapters 11 & 12

def par[A](m: Monoid[A]): Monoid[Par[A]] = new Monoid[Par[A]] {

def zero = Par.unit(m.zero)

def op(a: Par[A], b: Par[A]) = a.map2(b)(m.op)

}

// we perform the mapping and the reducing both in parallel

def parFoldMap[A,B](v: IndexedSeq[A], m: Monoid[B])(f: A => B): Par[B] =

Par.parMap(v)(f).flatMap { bs =>

foldMapV(bs, par(m))(b => Par.async(b))

}

Exercise 10.09

// This implementation detects only ascending order,

// but you can write a monoid that detects both ascending and descending

// order if you like.

def ordered(ints: IndexedSeq[Int]): Boolean = {

// Our monoid tracks the minimum and maximum element seen so far

// as well as whether the elements are so far ordered.

val mon = new Monoid[Option[(Int, Int, Boolean)]] {

def op(o1: Option[(Int, Int, Boolean)], o2: Option[(Int, Int, Boolean)]) =

(o1, o2) match {

// The ranges should not overlap if the sequence is ordered.

case (Some((x1, y1, p)), Some((x2, y2, q))) =>

Some((x1 min x2, y1 max y2, p && q && y1 <= x2))

case (x, None) => x

case (None, x) => x

}

val zero = None
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}

// The empty sequence is ordered, and each element by itself is ordered.

foldMapV(ints, mon)(i => Some((i, i, true))).map(_._3).getOrElse(true)

}

Exercise 10.10

sealed trait WC

case class Stub(chars: String) extends WC

case class Part(lStub: String, words: Int, rStub: String) extends WC

val wcMonoid: Monoid[WC] = new Monoid[WC] {

// The empty result, where we haven't seen any characters yet.

val zero = Stub("")

def op(a: WC, b: WC) = (a, b) match {

case (Stub(c), Stub(d)) => Stub(c + d)

case (Stub(c), Part(l, w, r)) => Part(c + l, w, r)

case (Part(l, w, r), Stub(c)) => Part(l, w, r + c)

case (Part(l1, w1, r1), Part(l2, w2, r2)) =>

Part(l1, w1 + (if ((r1 + l2).isEmpty) 0 else 1) + w2, r2)

}

}

Exercise 10.11

def count(s: String): Int = {

def wc(c: Char): WC =

if (c.isWhitespace)

Part("", 0, "")

else

Stub(c.toString)

def unstub(s: String) = s.length min 1

foldMapV(s.toIndexedSeq, wcMonoid)(wc) match {

case Stub(s) => unstub(s)

case Part(l, w, r) => unstub(l) + w + unstub(r)

}

}

Exercise 10.12
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trait Foldable[F[_]] {

def foldRight[A, B](as: F[A])(z: B)(f: (A, B) => B): B =

foldMap(as)(f.curried)(endoMonoid[B])(z)

def foldLeft[A, B](as: F[A])(z: B)(f: (B, A) => B): B =

foldMap(as)(a => (b: B) => f(b, a))(dual(endoMonoid[B]))(z)

def foldMap[A, B](as: F[A])(f: A => B)(mb: Monoid[B]): B =

foldRight(as)(mb.zero)((a, b) => mb.op(f(a), b))

def concatenate[A](as: F[A])(m: Monoid[A]): A =

foldLeft(as)(m.zero)(m.op)

}

object ListFoldable extends Foldable[List] {

override def foldRight[A, B](as: List[A])(z: B)(f: (A, B) => B) =

as.foldRight(z)(f)

override def foldLeft[A, B](as: List[A])(z: B)(f: (B, A) => B) =

as.foldLeft(z)(f)

override def foldMap[A, B](as: List[A])(f: A => B)(mb: Monoid[B]): B =

foldLeft(as)(mb.zero)((b, a) => mb.op(b, f(a)))

}

object IndexedSeqFoldable extends Foldable[IndexedSeq] {

import Monoid._

override def foldRight[A, B](as: IndexedSeq[A])(z: B)(f: (A, B) => B) =

as.foldRight(z)(f)

override def foldLeft[A, B](as: IndexedSeq[A])(z: B)(f: (B, A) => B) =

as.foldLeft(z)(f)

override def foldMap[A, B](as: IndexedSeq[A])(f: A => B)(mb: Monoid[B]): B =

foldMapV(as, mb)(f)

}

object StreamFoldable extends Foldable[Stream] {

override def foldRight[A, B](as: Stream[A])(z: B)(f: (A, B) => B) =

as.foldRight(z)(f)

override def foldLeft[A, B](as: Stream[A])(z: B)(f: (B, A) => B) =

as.foldLeft(z)(f)

}

Exercise 10.13
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sealed trait Tree[+A]

case class Leaf[A](value: A) extends Tree[A]

case class Branch[A](left: Tree[A], right: Tree[A]) extends Tree[A]

object TreeFoldable extends Foldable[Tree] {

override def foldMap[A, B](as: Tree[A])(f: A => B)(mb: Monoid[B]): B =

as match {

case Leaf(a) => f(a)

case Branch(l, r) => mb.op(foldMap(l)(f)(mb), foldMap(r)(f)(mb))

}

override def foldLeft[A, B](as: Tree[A])(z: B)(f: (B, A) => B) = as match {

case Leaf(a) => f(z, a)

case Branch(l, r) => foldLeft(r)(foldLeft(l)(z)(f))(f)

}

override def foldRight[A, B](as: Tree[A])(z: B)(f: (A, B) => B) = as match {

case Leaf(a) => f(a, z)

case Branch(l, r) => foldRight(l)(foldRight(r)(z)(f))(f)

}

}

Notice that in TreeFoldable.foldMap, we don’t actually use the zero from the Monoid. This is
because there is no empty tree. This suggests that there might be a class of types that are foldable
with something “smaller” than a monoid, consisting only of an associative op. That kind of object
(a monoid without a zero) is called a semigroup.

Exercise 10.14

object OptionFoldable extends Foldable[Option] {

override def foldMap[A, B](as: Option[A])(f: A => B)(mb: Monoid[B]): B =

as match {

case None => mb.zero

case Some(a) => f(a)

}

override def foldLeft[A, B](as: Option[A])(z: B)(f: (B, A) => B) = as match {

case None => z

case Some(a) => f(z, a)

}

override def foldRight[A, B](as: Option[A])(z: B)(f: (A, B) => B) = as match {

case None => z

case Some(a) => f(a, z)

}

}

Exercise 10.15
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def toList[A](as: F[A]): List[A] =

foldRight(as)(List[A]())(_ :: _)

Exercise 10.16

def productMonoid[A,B](A: Monoid[A], B: Monoid[B]): Monoid[(A, B)] =

new Monoid[(A, B)] {

def op(x: (A, B), y: (A, B)) =

(A.op(x._1, y._1), B.op(x._2, y._2))

val zero = (A.zero, B.zero)

}

Exercise 10.17

def functionMonoid[A,B](B: Monoid[B]): Monoid[A => B] =

new Monoid[A => B] {

def op(f: A => B, g: A => B) = a => B.op(f(a), g(a))

val zero: A => B = a => B.zero

}

Exercise 10.18

def mapMergeMonoid[K,V](V: Monoid[V]): Monoid[Map[K, V]] =

new Monoid[Map[K, V]] {

def zero = Map[K,V]()

def op(a: Map[K, V], b: Map[K, V]) =

(a.keySet ++ b.keySet).foldLeft(zero) { (acc,k) =>

acc.updated(k, V.op(a.getOrElse(k, V.zero),

b.getOrElse(k, V.zero)))

}

}

def bag[A](as: IndexedSeq[A]): Map[A, Int] =

foldMapV(as, mapMergeMonoid[A, Int](intAddition))((a: A) => Map(a -> 1))

Answers to exercises for chapter 11

Exercise 11.01
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val parMonad = new Monad[Par] {

def unit[A](a: => A) = Par.unit(a)

def flatMap[A,B](ma: Par[A])(f: A => Par[B]) = Par.flatMap(ma)(f)

}

def parserMonad[P[+_]](p: Parsers[P]) = new Monad[P] {

def unit[A](a: => A) = p.succeed(a)

def flatMap[A,B](ma: P[A])(f: A => P[B]) = p.flatMap(ma)(f)

}

val optionMonad = new Monad[Option] {

def unit[A](a: => A) = Some(a)

def flatMap[A,B](ma: Option[A])(f: A => Option[B]) = ma flatMap f

}

val streamMonad = new Monad[Stream] {

def unit[A](a: => A) = Stream(a)

def flatMap[A,B](ma: Stream[A])(f: A => Stream[B]) = ma flatMap f

}

val listMonad = new Monad[List] {

def unit[A](a: => A) = List(a)

def flatMap[A,B](ma: List[A])(f: A => List[B]) = ma flatMap f

}

Exercise 11.02

Since State is a binary type constructor, we need to partially apply it with the S type argument.
Thus, it is not just one monad, but an entire family of monads, one for each type S. One solution is
to create a class StateMonads that accepts the S type argument and then has a type member for the
fully applied State[S, A] type inside:

class StateMonads[S] {

type StateS[A] = State[S, A]

// We can then declare the monad for the `StateS` type constructor:

val monad = new Monad[StateS] {

def unit[A](a: => A): State[S, A] = State(s => (a, s))

override def flatMap[A,B](st: State[S, A])(f: A => State[S, B]): State[S, B] =

st flatMap f

}

}

But we don’t have to create a full class like StateMonads. We can create an anonymous class inline,
inside parentheses, and project out its type member f. This is sometimes called a “type lambda”,
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since it’s very similar to a type-level anonymous function.

def stateMonad[S] = new Monad[({type f[x] = State[S, x]})#f] {

def unit[A](a: => A): State[S, A] = State(s => (a, s))

override def flatMap[A,B](st: State[S, A])(f: A => State[S, B]): State[S, B] =

st flatMap f

}

Exercise 11.03

def sequence[A](lma: List[F[A]]): F[List[A]] =

lma.foldRight(unit(List[A]()))((ma, mla) => map2(ma, mla)(_ :: _))

def traverse[A,B](la: List[A])(f: A => F[B]): F[List[B]] =

la.foldRight(unit(List[B]()))((a, mlb) => map2(f(a), mlb)(_ :: _))

/**

* 'Balanced' sequencing, which should behave like `sequence`,

* but it can use less stack for some data types. We'll see later

* in this chapter how the monad _laws_ let us conclude both

* definitions 'mean' the same thing.

*/

def bsequence[A](ms: Seq[F[A]]): F[IndexedSeq[A]] = {

if (ms.isEmpty) point(Vector())

else if (ms.size == 1) ms.head.map(Vector(_))

else {

val (l,r) = ms.toIndexedSeq.splitAt(ms.length / 2)

map2(bsequence(l), bsequence(r))(_ ++ _)

}

}

Exercise 11.04

// Recursive version:

def _replicateM[A](n: Int, ma: F[A]): F[List[A]] =

if (n <= 0) unit(List[A]()) else map2(ma, replicateM(n - 1, ma))(_ :: _)

// Using `sequence` and the `List.fill` function of the standard library:

def replicateM[A](n: Int, ma: F[A]): F[List[A]] =

sequence(List.fill(n)(ma))

Exercise 11.05

For List, the replicateM function will generate a list of lists. It will contain all the lists of length n

with elements selected from the input list.
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For Option, it will generate either Some or None based on whether the input is Some or None. The
Some case will contain a list of length n that repeats the element in the input Option.

The generalmeaning of replicateM is describedwell by the implementation sequence(List.fill(n)(ma)).
It repeats the ma monadic value n times and gathers the results in a single value, where the monad
F determines how values are actually combined.

Exercise 11.06

For Par, filterM filters a list, applying the functions in parallel; for Option, it filters a list, but
allows the filtering function to fail and abort the filter computation; for Gen, it produces a generator
for subsets of the input list, where the function f picks a ‘weight’ for each element (in the form of a
Gen[Boolean])

def filterM[A](ms: List[A])(f: A => F[Boolean]): F[List[A]] =

ms match {

case Nil => unit(Nil)

case h :: t => flatMap(f(h))(b =>

if (!b) filterM(t)(f)

else map(filterM(t)(f))(h :: _))

}

Exercise 11.07

def compose[A,B,C](f: A => F[B], g: B => F[C]): A => F[C] =

a => flatMap(f(a))(g)

Exercise 11.08

def flatMap[A,B](ma: F[A])(f: A => F[B]): F[B] =

compose((_:Unit) => ma, f)(())

Exercise 11.09

Let’s rewrite the following in terms of flatMap:
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compose(compose(f, g), h) == compose(f, compose(g, h))

a => flatMap(compose(f, g)(a))(h) == a => flatMap(f(a))(compose(g, h))

a => flatMap((b => flatMap(f(b))(g))(a))(h) ==

a => flatMap(f(a))(b => flatMap(g(b))(h))

So far we have just expanded the definition of compose. Equals substituted for equals. Let’s simplify
the left side a little:

a => flatMap(flatMap(f(a))(g))(h) == a => flatMap(f(a))(b => flatMap(g(b))(h))

Let’s simplify again by eliminating the a argument and substituting a hypothetical value x for f(a):

flatMap(flatMap(x)(g))(h) == flatMap(x)(b => flatMap(g(b))(h))

This now looks exactly like the monad law stated in terms of flatMap, just with different names:

flatMap(flatMap(x)(f))(g) == flatMap(x)(a => flatMap(f(a))(g))

Q.E.D.

Exercise 11.10

We simply substitute the definition of compose in terms of flatMap.

compose(f, unit)(v) == f(v) // for all functions f and values v

(a => flatMap(f(a))(unit))(v) == f(v) // Expand `compose`

flatMap(f(v))(unit) == f(v) // Simplify function application

flatMap(x)(unit) == x // Abstract out `f(v)`

compose(unit, f)(x) == f(x)

flatMap(unit(x))(f) == f(x) // Expand `compose`

Q.E.D.

Exercise 11.11

For Option, we again consider both cases None and Some and expand the equation. The monadic
unit is the Some(_) constructor.
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// Left identity is trivially true for None:

flatMap(None)(Some(_)) == None

// And here it is for Some:

flatMap(Some(v))(Some(_)) == Some(v)

// Substitute the definition of `flatMap`:

Some(v) == Some(v)

// Right identity is just as easy for None:

flatMap(Some(None))(f) == f(None)

// Substitute definition of flatMap:

f(None) == f(None)

// And for Some:

flatMap(Some(Some(v)))(f) == f(Some(v))

// Substitute definition of flatMap:

f(Some(v)) == f(Some(v))

Exercise 11.12

def join[A](mma: F[F[A]]): F[A] = flatMap(mma)(ma => ma)

Exercise 11.13

def flatMap[A,B](ma: F[A])(f: A => F[B]) =

join(map(ma)(f))

def compose[A,B,C](f: A => F[B], g: B => F[C]): A => F[C] =

a => join(map(f(a))(g))

Exercise 11.14

We can look at the associative law in terms of flatMap from another perspective. It says that
x.flatMap(f).flatMap(g) is equal to x.flatMap(a => f(a).flatMap(g)) for all choices of f and
g. So let’s pick a particular f and g that’s easy to think about. We can just pick the identity function:

x.flatMap(z => z).flatMap(z => z) == x.flatMap(a => a.flatMap(z => z))

And of course, flatMapping with the identify function is join! The associative law can now be stated
as:
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join(join(x)) == x.flatMap(join)

And we know that flatMap is “map, then join,” so let’s eliminate this last call to flatMap:

join(join(x)) == join(map(x)(join))

The identity laws in terms of join are:

join(map(x)(unit)) == x

join(unit(x)) == x

This follows from the definition of join and the identity laws in terms of flatMap:

flatMap(x)(unit) == x

flatMap(unit(x))(f) == f(x)

For the second law, we simply substitute the identity function for f, which gives us join.

Let’s make a fast-and-loose proof for this version of the associative law using the Listmonad as an
example. Of course, join in the List monad is just list concatenation:

scala> listMonad.join(List(List(1, 2), List(3, 4)))

res0: List[Int] = List(1, 2, 3, 4)

Now let’s say we have some lists, nested to a depth of three:

val ns: List[List[List[Int]]] =

List(List(List(1,2), List(3,4)),

List(List(), List(5)))

If we join this list, the outer lists get concatenated and we have a list of lists two levels deep:

scala> ns.flatten

res1: List[List[Int]] = List(List(1, 2), List(3, 4), List(), List(5))

If we instead map join over it, we get a different nesting but again two levels deep. This flattens
the inner lists.
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scala> ns.map(listMonad.join)

res2: List[List[Int]] = List(List(1, 2, 3, 4), List(5))

And then joining res1 should be the same as joining res2:

scala> listMonad.join(res1) == listMonad.join(res2)

res3: Boolean = true

So all that the associative law is saying for the List monad is that concatenating the outer lists and
then the inner ones (join(join(ns))) is the same as first concatenating the inner lists and then the
outer ones (join(ns.map(join))).

Exercise 11.15

We can state the associative law in terms of join:

join(join(x)) == join(map(x)(join))

For Par, the join combinator means something like “make the outer thread wait for the inner one
to finish.” What this law is saying is that if you have threads starting threads three levels deep, then
joining the inner threads and then the outer ones is the same as joining the outer threads and then
the inner ones.

For Parser, the join combinator is running the outer parser to produce a Parser, then running the
inner Parser on the remaining input. The associative law is saying, roughly, that only the order of
nesting matters, since that’s what affects the order in which the parsers are run.

Exercise 11.16

Recall the identity laws:

• left identity: flatMap(unit(x))(f) == f(x)

• right identity: flatMap(x)(unit) == x

The left identity law for Gen: The law states that if you take the values generated by unit(x) (which
are always x) and apply f to those values, that’s exactly the same as the generator returned by f(x).

The right identity law for Gen: The law states that if you apply unit to the values inside the generator
x, that does not in any way differ from x itself.

The left identity law for List: The law says that wrapping a list in a singleton List and then
flattening the result is the same as doing nothing.

The right identity law for List: The law says that if you take every value in a list, wrap each one in
a singleton List, and then flatten the result, you get the list you started with.

Exercise 11.17
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case class Id[A](value: A) {

def map[B](f: A => B): Id[B] = Id(f(value))

def flatMap[B](f: A => Id[B]): Id[B] = f(value)

}

object Id {

val idMonad = new Monad[Id] {

def unit[A](a: => A) = Id(a)

def flatMap[A,B](ida: Id[A])(f: A => Id[B]): Id[B] = ida flatMap f

}

}

Exercise 11.18

replicateM for State repeats the same state transition a number of times and returns a list of the
results. It’s not passing the same starting state many times, but chaining the calls together so that
the output state of one is the input state of the next.

map2 works similarly in that it takes two state transitions and feeds the output state of one to the
input of the other. The outputs are not put in a list, but combined with a function f.

sequence takes an entire list of state transitions and does the same kind of thing as replicateM: it
feeds the output state of the first state transition to the input state of the next, and so on. The results
are accumulated in a list.

Exercise 11.19

// Getting and setting the same state does nothing:

getState.flatMap(setState) == unit(())

// written as for-comprehension:

for {

x <- getState

_ <- setState(x)

} yield ()

// Setting the state to `s` and getting it back out yields `s`.

setState(s).flatMap(_ => getState) == unit(s)

// alternatively:

for {

_ <- setState(s)

x <- getState

} yield x
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Exercise 11.20

object Reader {

def readerMonad[R] = new Monad[({type f[x] = Reader[R,x]})#f] {

def unit[A](a: => A): Reader[R,A] = Reader(_ => a)

def flatMap[A,B](st: Reader[R,A])(f: A => Reader[R,B]): Reader[R,B] =

Reader(r => f(st.run(r)).run(r))

}

// A primitive operation for it would be simply to ask for the `R` argument:

def ask[R]: Reader[R, R] = Reader(r => r)

}

The action of Reader’s flatMap is to pass the r argument along to both the outer Reader and also
to the result of f, the inner Reader. Similar to how State passes along a state, except that in Reader

the “state” is read-only.

The meaning of sequence here is that if you have a list of functions, you can turn it into a function
that takes one argument and passes it to all the functions in the list, returning a list of the results.

The meaning of join is simply to pass the same value as both arguments to a binary function.

The meaning of replicateM is to apply the same function a number of times to the same argument,
returning a list of the results. Note that if this function is pure, (which it should be), this can be
exploited by only applying the function once and replicating the result instead of calling the function
many times. This means the Reader monad can override replicateM to provide a very efficient
implementation.

Answers to exercises for chapter 12

Exercise 12.01

def sequence[A](fas: List[F[A]]): F[List[A]] =

traverse(fas)(fa => fa)

def replicateM[A](n: Int, fa: F[A]): F[List[A]] =

sequence(List.fill(n)(fa))

def product[A,B](fa: F[A], fb: F[B]): F[(A,B)] =

map2(fa, fb)((_,_))

Exercise 12.02
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trait Applicative[F[_]] extends Functor[F] {

// `map2` is implemented by first currying `f` so we get a function

// of type `A => B => C`. This is a function that takes `A` and returns

// another function of type `B => C`. So if we map `f.curried` over an

// `F[A]`, we get `F[B => C]`. Passing that to `apply` along with the

// `F[B]` will give us the desired `F[C]`.

def map2[A,B,C](fa: F[A], fb: F[B])(f: (A, B) => C): F[C] =

apply(map(fa)(f.curried), fb)

// We simply use `map2` to lift a function into `F` so we can apply it

// to both `fab` and `fa`. The function being lifted here is `_(_)`,

// which is the same as the lambda notation `(f, x) => f(x)`. That is,

// It's a function that takes two arguments:

// 1. A function `f`

// 2. An argument `x` to that function

// and it simply applies `f` to `x`.

def apply[A,B](fab: F[A => B])(fa: F[A]): F[B] =

map2(fab, fa)(_(_))

def unit[A](a: => A): F[A]

def map[A,B](fa: F[A])(f: A => B): F[B] =

apply(unit(f))(fa)

}

Exercise 12.03

/*

The pattern is simple. We just curry the function

we want to lift, pass the result to `unit`, and then `apply`

as many times as there are arguments.

Each call to `apply` is a partial application of the function

*/

def map3[A,B,C,D](fa: F[A],

fb: F[B],

fc: F[C])(f: (A, B, C) => D): F[D] =

apply(apply(apply(unit(f.curried))(fa))(fb))(fc)

def map4[A,B,C,D,E](fa: F[A],

fb: F[B],

fc: F[C],

fd: F[D])(f: (A, B, C, D) => E): F[E]

apply(apply(apply(apply(unit(f.curried))(fa))(fb))(fc))(fd)
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Exercise 12.04

This transposes the list! That is, we start with a list of rows, each of which is possibly infinite in
length. We get back a single row, where each element is the column of values at that position. Try
it yourself in the REPL.

Exercise 12.05

def eitherMonad[E]: Monad[({type f[x] = Either[E, x]})#f] =

new Monad[({type f[x] = Either[E, x]})#f] {

def unit[A](a: => A): Either[E, A] = Right(a)

def flatMap[A,B](eea: Either[E, A])(f: A => Either[E, B]) = eea match {

case Right(a) => f(a)

case Left(e) => Left(e)

}

}

Exercise 12.06

def validationApplicative[E]: Applicative[({type f[x] = Validation[E,x]})#f] =

new Applicative[({type f[x] = Validation[E,x]})#f] {

def unit[A](a: => A) = Success(a)

override def map2[A,B,C](fa: Validation[E,A],

fb: Validation[E,B])(f: (A, B) => C) =

(fa, fb) match {

case (Success(a), Success(b)) => Success(f(a, b))

case (Failure(h1, t1), Failure(h2, t2)) =>

Failure(h1, t1 ++ Vector(h2) ++ t2)

case (e@Failure(_, _), _) => e

case (_, e@Failure(_, _)) => e

}

}

Exercise 12.07

We’ll just work through left and right identity, but the basic idea for all these proofs is to substitute
the definition of all functions, then use the monad laws to make simplifications to the applicative
identities.

Let’s start with left and right identity:
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map2(unit(()), fa)((_,a) => a) == fa // Left identity

map2(fa, unit(()))((a,_) => a) == fa // Right identity

We’ll do left identity first. We expand definition of map2:

def map2[A,B,C](fa: F[A], fb: F[B])(f: (A,B) => C): F[C]

flatMap(fa)(a => map(fb)(b => f(a,b)))

flatMap(unit())(u => map(fa)(a => a)) == fa

We just substituted unit(()) and (_,a) => a in for f. map(fa)(a => a) is just fa by the functor
laws, giving us:

flatMap(unit())(u => fa) == fa

Recall that flatMap can be rewritten using compose, by using Unit as the argument to the first
function.

compose(unit, u => fa)(()) == fa

And by the monad laws:

compose(unit, f) == f

Therefore, compose(unit, u => fa) simplifies to u => fa. And u is just Unit here, and is ignored,
so this is equivalent to fa:

(u => fa)(()) == fa

fa == fa

Right identity is symmetric; we just end up using the other identity for compose, that compose(f,
unit) == f.

flatMap(fa)(a => map(unit(()))(u => a)) == fa

flatMap(fa)(a => unit(a)) == fa // via functor laws

compose(u => fa, unit)(()) == fa

(u => fa)(()) == fa

fa == fa

Associativity and naturality are left as an exercise.

Exercise 12.08



Answers to exercises 125

def product[G[_]](G: Applicative[G]): Applicative[({type f[x] = (F[x], G[x])})#f] = {

val self = this

new Applicative[({type f[x] = (F[x], G[x])})#f] {

def unit[A](a: => A) = (self.unit(a), G.unit(a))

override def apply[A,B](fs: (F[A => B], G[A => B]))(p: (F[A], G[A])) =

(self.apply(fs._1)(p._1), G.apply(fs._2)(p._2))

}

}

Exercise 12.09

def compose[G[_]](G: Applicative[G]): Applicative[({type f[x] = F[G[x]]})#f] = {

val self = this

new Applicative[({type f[x] = F[G[x]]})#f] {

def unit[A](a: => A) = self.unit(G.unit(a))

override def map2[A,B,C](fga: F[G[A]], fgb: F[G[B]])(f: (A,B) => C) =

self.map2(fga, fgb)(G.map2(_,_)(f))

}

}

Exercise 12.10

If self and G both satisfy the laws, then so does the composite. The full proof of the laws can be
found at: https://github.com/runarorama/sannanir/blob/master/Applicative.v

Exercise 12.11

You want to try writing flatMap in terms of Monad[F] and Monad[G].

def flatMap[A,B](mna: F[G[A]])(f: A => F[G[B]]): F[G[B]] =

self.flatMap(na => G.flatMap(na)(a => ???))

Here all you have is f, which returns an F[G[B]]. For it to have the appropriate type to return from
the argument to G.flatMap, you’d need to be able to “swap” the F and G types. In other words, you’d
need a distributive law. Such an operation is not part of the Monad interface.

Exercise 12.12
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def sequenceMap[K,V](ofa: Map[K,F[V]]): F[Map[K,V]] =

(ofa foldLeft unit(Map.empty[K,V])) {

case (acc, (k, fv)) =>

map2(acc, fv)((m, v) => m + (k -> v))

}

Exercise 12.13

val listTraverse = new Traverse[List] {

override def traverse[G[_],A,B](as: List[A])(

f: A => G[B])(implicit G: Applicative[G]): G[List[B]] =

as.foldRight(G.unit(List[B]()))((a, fbs) => G.map2(f(a), fbs)(_ :: _))

}

val optionTraverse = new Traverse[Option] {

override def traverse[G[_],A,B](oa: Option[A])(

f: A => G[B])(implicit G: Applicative[G]): G[Option[B]] =

oa match {

case Some(a) => G.map(f(a))(Some(_))

case None => G.unit(None)

}

}

val treeTraverse = new Traverse[Tree] {

override def traverse[G[_],A,B](ta: Tree[A])(

f: A => G[B])(implicit G: Applicative[G]): G[Tree[B]] =

G.map2(f(ta.head),

listTraverse.traverse(ta.tail)(a => traverse(a)(f)))(Tree(_, _))

}

Exercise 12.14

The simplest possible Applicative we can use is Id:

type Id[A] = A

We already know this forms a Monad, so it’s also an applicative functor:

val idMonad = new Monad[Id] {

def unit[A](a: => A) = a

override def flatMap[A,B](a: A)(f: A => B): B = f(a)

}

We can now implement map by calling traverse, picking Id as the Applicative:
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def map[A,B](fa: F[A])(f: A => B): F[B] =

traverse[Id, A, B](xs)(f)(idMonad)

This implementation is suggestive of laws for traverse, since we expect this implementation to
obey the usual functor laws. See the chapter notes for discussion of the laws for Traverse.

Note that we can define traverse in terms of sequence and map, which means that a valid Traverse
instance may define sequence and map, or just traverse:

trait Traverse[F[_]] extends Functor[F] {

def traverse[G[_]:Applicative,A,B](fa: F[A])(f: A => G[B]): G[F[B]] =

sequence(map(fa)(f))

def sequence[G[_]:Applicative,A](fga: F[G[A]]): G[F[A]] =

traverse(fga)(ga => ga)

def map[A,B](fa: F[A])(f: A => B): F[B] =

traverse[Id, A, B](fa)(f)(idMonad)

}

Exercise 12.15

It’s because foldRight, foldLeft, and foldMap don’t give us any way of constructing a value of the
foldable type. In order to map over a structure, you need the ability to create a new structure (such as
Nil and Cons in the case of a List). Traverse is able to extend Functor precisely because a traversal
preserves the original structure. An example of a Foldable that is not a functor:

case class Iteration[A](a: A, f: A => A, n: Int) {

def foldMap[B](g: A => B)(M: Monoid[B]): B = {

def iterate(n: Int, b: B, c: A): B =

if (n <= 0) b else iterate(n-1, g(c), f(a))

iterate(n, M.zero, a)

}

}

This class conceptually represents a sequence of A values, generated by repeated function application
starting from some seed value. But can you see why it’s not possible to define map for this type?

Exercise 12.16

def reverse[A](fa: F[A]): F[A] =

mapAccum(fa, toList(fa).reverse)((_, as) => (as.head, as.tail))._1

Exercise 12.17
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override def foldLeft[A,B](fa: F[A])(z: B)(f: (B, A) => B): B =

mapAccum(fa, z)((a, b) => ((), f(b, a)))._2

Exercise 12.18

def fuse[G[_],H[_],A,B](fa: F[A])(f: A => G[B], g: A => H[B])

(implicit G: Applicative[G],

H: Applicative[H]): (G[F[B]], H[F[B]]) =

traverse[({type f[x] = (G[x], H[x])})#f, A, B](fa)(a => (f(a), g(a)))(G product H)

Exercise 12.19

def compose[G[_]](implicit G: Traverse[G]): Traverse[({type f[x] = F[G[x]]})#f] =

new Traverse[({type f[x] = F[G[x]]})#f] {

override def traverse[M[_]:Applicative,A,B](fa: F[G[A]])(f: A => M[B]) =

self.traverse(fa)((ga: G[A]) => G.traverse(ga)(f))

}

Exercise 12.20

def composeM[G[_],H[_]](implicit G: Monad[G], H: Monad[H], T: Traverse[H]):

Monad[({type f[x] = G[H[x]]})#f] = new Monad[({type f[x] = G[H[x]]})#f] {

def unit[A](a: => A): G[H[A]] = G.unit(H.unit(a))

override def flatMap[A,B](mna: G[H[A]])(f: A => G[H[B]]): G[H[B]] =

G.flatMap(mna)(na => G.map(T.traverse(na)(f))(H.join))

}

Answers to exercises for chapter 13

Exercise 13.01

def freeMonad[F[_]]: Monad[({type f[a] = Free[F,a]})#f] =

new Monad[({type f[a] = Free[F,a]})#f] {

def unit[A](a: => A) = Return(a)

def flatMap[A,B](fa: Free[F, A])(f: A => Free[F, B]) = fa flatMap f

}

Exercise 13.02
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@annotation.tailrec

def runTrampoline[A](a: Free[Function0,A]): A = (a) match {

case Return(a) => a

case Suspend(r) => r()

case FlatMap(x,f) => x match {

case Return(a) => runTrampoline { f(a) }

case Suspend(r) => runTrampoline { f(r()) }

case FlatMap(a0,g) => runTrampoline { a0 flatMap { a0 => g(a0) flatMap f } }

}

}

Exercise 13.03

// Exercise 3: Implement a `Free` interpreter which works for any `Monad`

def run[F[_],A](a: Free[F,A])(implicit F: Monad[F]): F[A] = step(a) match {

case Return(a) => F.unit(a)

case Suspend(r) => r

case FlatMap(Suspend(r), f) => F.flatMap(r)(a => run(f(a)))

case _ => sys.error("Impossible, since `step` eliminates these cases")

}

Exercise 13.04

def translate[F[_],G[_],A](f: Free[F,A])(fg: F ~> G): Free[G,A] = {

type FreeG[A] = Free[G,A]

val t = new (F ~> FreeG) {

def apply[A](a: F[A]): Free[G,A] = Suspend { fg(a) }

}

runFree(f)(t)(freeMonad[G])

}

def runConsole[A](a: Free[Console,A]): A =

runTrampoline { translate(a)(new (Console ~> Function0) {

def apply[A](c: Console[A]) = c.toThunk

})}

Exercise 13.05
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/*

* Exercise 5: Implement a non-blocking read from an asynchronous file channel.

* We'll just give the basic idea - here, we construct a `Future`

* by reading from an `AsynchronousFileChannel`, a `java.nio` class

* which supports asynchronous reads.

*/

import java.nio._

import java.nio.channels._

def read(file: AsynchronousFileChannel,

fromPosition: Long,

numBytes: Int): Par[Either[Throwable, Array[Byte]]] =

Par.async { (cb: Either[Throwable, Array[Byte]] => Unit) =>

val buf = ByteBuffer.allocate(numBytes)

file.read(buf, fromPosition, (), new CompletionHandler[Integer, Unit] {

def completed(bytesRead: Integer, ignore: Unit) = {

val arr = new Array[Byte](bytesRead)

buf.slice.get(arr, 0, bytesRead)

cb(Right(arr))

}

def failed(err: Throwable, ignore: Unit) =

cb(Left(err))

})

}

// note: We can wrap `read` in `Free[Par,A]` using the `Suspend` constructor

Answers to exercises for chapter 14

Exercise 14.01

def fill(xs: Map[Int,A]): ST[S,Unit] =

xs.foldRight(ST[S,Unit](())) {

case ((k, v), st) => st flatMap (_ => write(k, v))

}

Exercise 14.02
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// An action that does nothing

def noop[S] = ST[S,Unit](())

def partition[S](a: STArray[S,Int], l: Int, r: Int, pivot: Int): ST[S,Int] =

for {

vp <- a.read(pivot)

_ <- a.swap(pivot, r)

j <- STRef(l)

_ <- (l until r).foldLeft(noop[S])((s, i) => for {

_ <- s

vi <- a.read(i)

_ <- if (vi < vp) (for {

vj <- j.read

_ <- a.swap(i, vj)

_ <- j.write(vj + 1)

} yield ()) else noop[S]

} yield ())

x <- j.read

_ <- a.swap(x, r)

} yield x

def qs[S](a: STArray[S,Int], l: Int, r: Int): ST[S, Unit] = if (l < r) for {

pi <- partition(a, l, r, l + (r - l) / 2)

_ <- qs(a, l, pi - 1)

_ <- qs(a, pi + 1, r)

} yield () else noop[S]

Exercise 14.03

import scala.collection.mutable.HashMap

sealed trait STMap[S,K,V] {

protected def table: HashMap[K,V]

def size: ST[S,Int] = ST(table.size)

// Get the value under a key

def apply(k: K): ST[S,V] = ST(table(k))

// Get the value under a key, or None if the key does not exist

def get(k: K): ST[S, Option[V]] = ST(table.get(k))

// Add a value under a key

def +=(kv: (K, V)): ST[S,Unit] = ST(table += kv)
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// Remove a key

def -=(k: K): ST[S,Unit] = ST(table -= k)

}

object STMap {

def empty[S,K,V]: ST[S, STMap[S,K,V]] = ST(new STMap[S,K,V] {

val table = HashMap.empty[K,V]

})

def fromMap[S,K,V](m: Map[K,V]): ST[S, STMap[S,K,V]] = ST(new STMap[S,K,V] {

val table = (HashMap.newBuilder[K,V] ++= m).result

})

}

Answers to exercises for chapter 15

Exercise 15.01

def take[I](n: Int): Process[I,I] =

if (n <= 0) Halt()

else await(i => emit(i, take[I](n-1)))

def drop[I](n: Int): Process[I,I] =

if (n <= 0) id

else await(i => drop[I](n-1))

def takeWhile[I](f: I => Boolean): Process[I,I] =

await(i =>

if (f(i)) emit(i, takeWhile(f))

else Halt())

def dropWhile[I](f: I => Boolean): Process[I,I] =

await(i =>

if (f(i)) dropWhile(f)

else emit(i,id))

Exercise 15.02
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/*

* Exercise 2: Implement `count`.

*

* Here's one implementation, with three stages - we map all inputs

* to 1.0, compute a running sum, then finally convert the output

* back to `Int`. The three stages will be interleaved - as soon

* as the first element is examined, it will be converted to 1.0,

* then added to the running total, and then this running total

* will be converted back to `Int`, then the `Process` will examine

* the next element, and so on.

*/

def count[I]: Process[I,Int] =

lift((i: I) => 1.0) |> sum |> lift(_.toInt)

/* For comparison, here is an explicit recursive implementation. */

def count2[I]: Process[I,Int] = {

def go(n: Int): Process[I,Int] =

await((i: I) => emit(n+1, go(n+1)))

go(0)

}

Exercise 15.03

/*

* Exercise 3: Implement `mean`.

*

* This is an explicit recursive definition. We'll factor out a

* generic combinator shortly.

*/

def mean: Process[Double,Double] = {

def go(sum: Double, count: Double): Process[Double,Double] =

await((d: Double) => emit((sum+d) / (count+1), go(sum+d,count+1)))

go(0.0, 0.0)

}

Exercise 15.04
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def sum2: Process[Double,Double] =

loop(0.0)((d:Double, acc) => (acc+d,acc+d))

def count3[I]: Process[I,Int] =

loop(0)((_:I,n) => (n+1,n+1))

Exercise 15.05

/*

* Exercise 5: Implement `|>`. Let the types guide your implementation.

*/

def |>[O2](p2: Process[O,O2]): Process[I,O2] = {

p2 match {

case Halt() => Halt()

case Emit(h,t) => Emit(h, this |> t)

case Await(f) => this match {

case Emit(h,t) => t |> f(Some(h))

case Halt() => Halt() |> f(None)

case Await(g) => Await((i: Option[I]) => g(i) |> p2)

}

}

}

Exercise 15.06

// this uses the `zip` function defined in exercise 7

def zipWithIndex: Process[I,(O,Int)] =

this zip (count map (_ - 1))

Exercise 15.07

/*

* Exercise 7: Can you think of a generic combinator that would

* allow for the definition of `mean` in terms of `sum` and

* `count`?

*

* Yes, it is `zip`, which feeds the same input to two processes.

* The implementation is a bit tricky, as we have to make sure

* that input gets fed to both `p1` and `p2`.

*/

def zip[A,B,C](p1: Process[A,B], p2: Process[A,C]): Process[A,(B,C)] =

(p1, p2) match {

case (Halt(), _) => Halt()

case (_, Halt()) => Halt()
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case (Emit(b, t1), Emit(c, t2)) => Emit((b,c), zip(t1, t2))

case (Await(recv1), _) =>

Await((oa: Option[A]) => zip(recv1(oa), feed(oa)(p2)))

case (_, Await(recv2)) =>

Await((oa: Option[A]) => zip(feed(oa)(p1), recv2(oa)))

}

def feed[A,B](oa: Option[A])(p: Process[A,B]): Process[A,B] =

p match {

case Halt() => p

case Emit(h,t) => Emit(h, feed(oa)(t))

case Await(recv) => recv(oa)

}

Exercise 15.08

/*

* Exercise 8: Implement `exists`

*

* We choose to emit all intermediate values, and not halt.

* See `existsResult` below for a trimmed version.

*/

def exists[I](f: I => Boolean): Process[I,Boolean] =

lift(f) |> any

/* Emits whether a `true` input has ever been received. */

def any: Process[Boolean,Boolean] =

loop(false)((b:Boolean,s) => (s || b, s || b))

/* A trimmed `exists`, containing just the final result. */

def existsResult[I](f: I => Boolean) =

exists(f) |> takeThrough(!_) |> dropWhile(!_) |> echo.orElse(emit(false))

/*

* Like `takeWhile`, but includes the first element that tests

* false.

*/

def takeThrough[I](f: I => Boolean): Process[I,I] =

takeWhile(f) ++ echo

/* Awaits then emits a single value, then halts. */

def echo[I]: Process[I,I] = await(i => emit(i))
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Exercise 15.09

This process defines the here is core logic, a transducer that converts input lines (assumed to be
temperatures in degrees fahrenheit) to output lines (temperatures in degress celsius). Left as an
exercise to supply another wrapper like processFile to actually do the IO and drive the process.

def convertFahrenheit: Process[String,String] =

filter((line: String) => !line.startsWith("#")) |>

filter(line => line.trim.nonEmpty) |>

lift(line => toCelsius(line.toDouble).toString)

def toCelsius(fahrenheit: Double): Double =

(5.0 / 9.0) * (fahrenheit - 32.0)

Exercise 15.10

/*

* Exercise 10: This function is defined only if given a `MonadCatch[F]`.

* Unlike the simple `runLog` interpreter defined in the companion object

* below, this is not tail recursive and responsibility for stack safety

* is placed on the `Monad` instance.

*/

def runLog(implicit F: MonadCatch[F]): F[IndexedSeq[O]] = {

def go(cur: Process[F,O], acc: IndexedSeq[O]): F[IndexedSeq[O]] =

cur match {

case Emit(h,t) => go(t, acc :+ h)

case Halt(End) => F.unit(acc)

case Halt(err) => F.fail(err)

case Await(req,recv) => F.flatMap (F.attempt(req)) {

e => go(Try(recv(e)), acc)

}

}

go(this, IndexedSeq())

}

Exercise 15.11
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/*

* Create a `Process[IO,O]` from the lines of a file, using

* the `resource` combinator above to ensure the file is closed

* when processing the stream of lines is finished.

*/

def lines(filename: String): Process[IO,String] =

resource

{ IO(io.Source.fromFile(filename)) }

{ src =>

lazy val iter = src.getLines // a stateful iterator

def step = if (iter.hasNext) Some(iter.next) else None

lazy val lines: Process[IO,String] = eval(IO(step)).flatMap {

case None => Halt(End)

case Some(line) => Emit(line, lines)

}

lines

}

{ src => eval_ { IO(src.close) } }

/* Exercise 11: Implement `eval`, `eval_`, and use these to implement `lines`. */

def eval[F[_],A](a: F[A]): Process[F,A] =

await[F,A,A](a) {

case Left(err) => Halt(err)

case Right(a) => Emit(a, Halt(End))

}

/* Evaluate the action purely for its effects. */

def eval_[F[_],A,B](a: F[A]): Process[F,B] =

eval[F,A](a).drain[B]

Exercise 15.12

Notice this is the standard monadic join combinator!

def join[F[_],A](p: Process[F,Process[F,A]]): Process[F,A] =

p.flatMap(pa => pa)



A brief introduction to Haskell, and
why it matters
Haskell²¹⁵ is in some ways a nicer language for functional programming than Scala, and if you are
serious about learningmore FP, we recommend learning it. We recommend this even if you continue
to program predominantly in Scala. Why? Many of the key ideas and structures covered in this book
(for instance, most of parts 3 and 4) originated with research or work using Haskell. Throughout the
chapter notes, we have provided links to further reading–many of those references use Haskell, and
knowing Haskell at least well enough to ‘read’ it will let you tap into the enormous well of ideas
about FP that exist in the Haskell community. Our goal here is not to make you a Haskell expert,
but to give enough of an introduction to the language that you can learn from the various resources
(papers, blog posts, and code) about FP that use Haskell.

About Haskell

Haskell is a purely functional language. Unlike Scala, there is no escape hatch–if you want to write
imperative code in Haskell, you are forced to use the techniques discussed in part 4–the IO and
ST monads, and/or a higher-level library built atop these data types, like the streaming library we
discussed in chapter 15. (Technically, Haskell does include some functions, like unsafePerformIO,
that allow you to subvert its purity. But these functions are used extremely rarely, as they don’t mix
well with Haskell’s laziness.) This lack of escape hatch has been one reason why many discoveries of
how to write functional programs have come from the Haskell community–in Haskell, the question,
“how do I express this program using pure functions?” is not merely an intellectual exercise, it is a
prerequisite to getting anything done!

Notably, Haskell is also lazy by default. As we discussed in chapter 5, Scala (and most other lan-
guages) by default evaluates function arguments before calling the function. In Haskell, arguments
are by default passed unevaluated and data constructors are also lazy. This is a very different model
of computation than a strict language, and reasoning about performance in Haskell is different than
in a strict language. There are benefits to the Haskell model (we discussed some of these benefits in
chapter 5), though if you do start Haskell programming, take the time to fully understand Haskell’s
evaluation model and incorporate it into your thinking.

Note: To be a bit more precise, the Haskell standard does not technically dictate that all functions
be call-by-need (lazy) and the compiler/runtime is free to do more strict evaluation so long as this
does not affect program behavior. As a general rule, though, call-by-need evaluation provides a
reasonable mental model for how Haskell programs are executed.

²¹⁵http://www.haskell.org/haskellwiki/Haskell

http://www.haskell.org/haskellwiki/Haskell
http://www.haskell.org/haskellwiki/Haskell
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We won’t talk too much more about Haskell’s laziness in this appendix, but follow some of the links
at the end for more information.

Haskell syntax

Let’s start by looking at a simple "Hello world!" program, which we might place in a file, Main.hs:

module Main where -- A comment, starting with `--`

-- Equivalent to `def main: IO[Unit] = ...`

main :: IO ()

main = putStr "Hello world!!"

We can compile this using the Glasgow Haskell Compiler²¹⁶ (GHC), which comes bundled with the
Haskell Platform²¹⁷.

> ghc --make Main

[1 of 1] Compiling Main ( Main.hs, Main.o )

Linking Main ...

> ./Main

Hello world!!

Module declarations start with the keyword module, then are followed by amodule name (here Main,
but Foo.Bar.Baz and Data.List are also valid module names), then the keyword where. Like Java,
module names must follow directory structure, so Foo.Bar must live in a file called Bar.hs inside
the Foo/ directory.

The entry point of a Haskell program is the main function. In Haskell, type signatures precede the
declaration of the value. So main :: IO () is a type signature, preceding the definition of main =

putStr "Hello world!!" on the subsequent line. We pronounce the :: symbol as ‘has type’.

Since Haskell is pure, it uses an IO type to represent computations that may interact with the outside
world. Unlike Scala, IO is built into the language–you do not need to write your own IO type like
we did in chapter 13. And there are a couple other differences in how we write type signatures–the
Unit type from Scala is written as () in Haskell. (Like Scala, it has a single value, written ()) And
type application uses juxtaposition, rather than square brackets. For comparison:

• IO[Unit] (Scala) vs IO () (Haskell)
• Map[String,Double] vs Map String Double

• Map[String,Map[K,V]] vs Map String (Map k v): In Haskell, type variables must begin with
a lowercase letter. Names starting with uppercase are reserved for concrete types and data
constructor names.

²¹⁶http://www.haskell.org/ghc/
²¹⁷http://www.haskell.org/platform/

http://www.haskell.org/ghc/
http://www.haskell.org/platform/
http://www.haskell.org/ghc/
http://www.haskell.org/platform/
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..

Modules with explicit export lists
All values and types declared inside a Haskell module are public by default. If you wish to make
some of these private, you can declare the module with an explicit export list, and simply avoid
mentioning any private functions you don’t want others to use. For example:

module TopSecret (f1, f2) where

f1 :: Int

f1 = f2 + magicValue

f2 = 97

magicValue = 42

Since magicValue is not exported, it will not be visible to users of this module. See the Haskell
wikibook for more information about importing and exporting.

http://en.wikibooks.org/wiki/Haskell/Modules#Exporting

Type application is left-associative, so Foo x y z is the same as ((Foo x) y) z. Unlike Scala, type
constructors in Haskell are curried by default. We do not need to do anything special to partially
apply a type constructor, we just leave off some of the arguments (recall the type-lambda trick we
introduced in chapter 11 when giving the Monad instance for State.) We’ll see how this comes in
handy later, when giving the Monad instance for State.

Let’s look at a couple function definitions:

factorial :: Int -> Int

factorial 0 = 1

factorial n = n * factorial (n-1)

factorial' :: Int -> Int

factorial' n = go n 1

where go 0 acc = acc

go n acc = go (n-1) (n * acc)

factorial'' :: Int -> Int

factorial'' n =

let go 0 acc = acc

go n acc = go (n-1) (n * acc)

in go n 1

A few things about this code:

http://en.wikibooks.org/wiki/Haskell/Modules#Exporting
http://en.wikibooks.org/wiki/Haskell/Modules#Exporting
http://en.wikibooks.org/wiki/Haskell/Modules#Exporting
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• Function types are written using -> instead of => as in Scala.
• Identifier names in Haskell can contain the ' symbol (as well as _, letters, and numbers, though
data types must start with a capital letter and other identifiers cannot start with a number or
').

• The syntax for function application is simple juxtaposition, with arguments separated by
spaces, as in go n 1 (vs go(n, 1) in Scala). Function application is left-associative and binds
tighter than any other operation, so f x y+1 would actually be parsed as (f x y) + 1, and
we can use parentheses to obtain a desired grouping.

• We are also making use of a local function to write our loop in both factorial' and
factorial'', much like we’d do in Scala, though unlike Scala, all tail calls are optimized.
Syntactically, we can place local definition(s) after the expression that references it, using a
where-clause (used in factorial') or we can place the local definitions before the expression
referencing it, using a let expression (used in factorial'').

• These examples demonstrate some simple pattern matching in Haskell, matching on the
numeric literal 0. We can write a function’s name several times, supplying a pattern for each
argument. Patterns are matched top to bottom, as in Scala. We’ll talk more about Haskell’s
pattern matching in the next section.

Note: Haskell determines where blocks begin and end based on indentation. Certain keywords (like
let and where) introduce a layout block. Read all about the details here²¹⁸.

Lastly, we note that unlike Scala, Haskell does not have a distinction between val, def, lazy val, and
var. All declarations use the same syntax, a symbol name, followed by any arguments or patterns,
followed by an = sign, followed by the body of the definition.

Data types and higher order functions

Unlike Scala, algebraic data types in Haskell are not represented using subtypes. Instead, we declare
an ADT just by listing its data constructors using the following syntax:

data List a = Nil | Cons a (List a)

data Option a -- alternate style

= None

| Some a

An ADT is introduced with the keyword data, followed by the name of the type, followed by a
list of type parameter names separated by spaces, followed by an =, then a list of data constructors
separated by |. Each data constructor must start with an uppercase letter (exception: constructors
startingwith : are allowed, and are useful for infix ‘operator’ data constructors), and aswith function

²¹⁸http://en.wikibooks.org/wiki/Haskell/Indentation

http://en.wikibooks.org/wiki/Haskell/Indentation
http://en.wikibooks.org/wiki/Haskell/Indentation
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application we just separate the arguments of the data constructor by spaces, using parentheses for
grouping. Note that data constructor arguments are unnamed, we give only their types. There is a
limited form of named accessors in Haskell; see the sidebar below.

Rather than having Nil ‘extend’ List[Nothing], Haskell has proper universally quantified types.
The type of the value Nil is forall a . List a, which means that we can treat Nil as a List Int,
a List String, and so on, for any choice of a.

Note: Haskell also includes a feature called generalized algebraic data types (GADTs), which have a
slightly different syntax. GADTs are quite powerful and come up a lot when designing embedded
domain specific languages. See the Haskell Wikibook²¹⁹ for more information.

As mentioned above, data constructors in Haskell are lazy by default. We could use the List data
type above to construct an infinite sequence, much like we did for Stream in chapter 5.

Pattern matching mirrors the syntax of the data constructors as in headOption, which returns the
first element of a List a, if one exists.

headOption :: List a -> Option a

headOption Nil = None

headOption (Cons h t) = Some h

Pattern matching forces evaluation of the expression being matched (here, the argument to
headOption), though the expression is only forced to a depth needed to resolve which branch to
take. Thus, headOption works fine for an infinite list.

..

Haskell record syntax
If you want to name the arguments to a data constructor, you can just write functions, for instance
(note these are partial functions which generate a pattern match error at runtime if given Nil):

head (Cons h _) = h

tail (Cons _ t) = t

Haskell provides some syntax sugar which generates these functions for you:

data List a = Nil | Cons { head :: a, tail :: List a }

This is the same List type but the { head :: a, tail :: List a } instructs the compiler to generate
the head and tail accessors. Because this simple scheme puts accessors into themodule namespace,

²¹⁹http://en.wikibooks.org/wiki/Haskell/GADT
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..

you cannot have two data constructors in the same module with a same-named argument. There
are various proposals to improve on this.

Note: Haskell does not support ad hoc name overloading like Scala.

Note that the Haskell standard library contains an implementation of Option, although the type is
called Maybe, and its constructors are called Nothing and Just instead of None and Some:

data Maybe a = Nothing | Just a

There is also a data type, Either in Haskell, with the same constructors as Scala:

data Either a b = Left a | Right b

List syntax and higher order functions

Lists in Haskell come built in and have some special syntax. We write the type List Int as [Int],
we write Nil as [], and Cons h t as h:t. The : operator is right-associative, so 1:2:[] is equal to
1:(2:[]). And we can write list literals using the syntax [1,2,3,4], ["a","b"].

Let’s look at a couple familiar higher-order list functions, which will also give us an excuse to discuss
some more bits of Haskell syntax:

foldRight :: (a -> b -> b) -> b -> [a] -> b

foldRight f z xs = case xs of

[] -> z

h:t -> f h (foldRight f z t)

-- signature not needed (see note below)

takeWhile f xs =

foldRight (\h t -> if f h then h : t else []) [] xs

takeWhile' f =

foldRight (\h t -> if f h then h : t else []) []

Note: In the Haskell standard library, foldRight is called foldr and foldLeft is called foldl.

Note: Haskell is fully inferred, unlike Scala, so type annotations are generally not needed anywhere,
not even for top-level function declarations (though it is considered good style to include them).

This snippet again shows a few new things. Let’s start by looking at the type signature. What’s with
all the -> symbols? Functions in Haskell are curried by default. Although we can write (Int,Int)
-> Int, for the type of a function that expects a pair of integers and returns an Int, we almost always
work with curried functions in Haskell and the language has special support for interpreting curried
function application efficiently. The -> operator is right-associative, so the type (a -> b -> b) ->

b -> List a -> b can be read the same way you’d read the Scala signature:
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def foldRight[A,B](f: (A,B) => B, z: B, xs: List[A]): B

Function literal syntax is a bit different in Haskell as well. In Scala, we’d write (h,t) => ...,
in Haskell, we write \h t -> .... The parameters to a lambda function mirrors the syntax for
function application, with parameters separated by spaces. Following the parameter list is the ->,
then the body of the lambda. In this case, the function literal we are passing to foldRight uses an
if expression, which uses the syntax if <expr> then <expr> else <expr>.

Moving on, we see an alternate syntax for pattern matching the case ... of syntax. This is
analogous to Scala’s match expression, and grammatically it can be used anywhere an expression is
expected–it’s not tied to a symbol delaration like we saw earlier for factorial.

Lastly, the definition of takeWhile' shows a very common idiom in Haskell. Because functions are
curried by default, we get a very lightweight syntax for left-to-right partial application–we simply
leave off some of the arguments! In the case of takeWhile', we are leaving off one of its parameters
(the list parameter), since all we are doing with it is passing it along to the foldRight function. This
is called eta reduction. More generally, the following three definitions are all equivalent:

f x y = g x y

f x = g x -- eta reduction

f = g -- another eta reduction

The Haskell Wiki²²⁰ has a nice further explanation.

Generally, function parameters are ordered to maximize the usefulness of left-to-right partial
application, which is usually the opposite order of typical OO.

Note: In Haskell, you’ll often see expressions like sum (filter isEven (map f xs)) written as:
sum . filter isEven . map f $ xs. What’s going on here? Well, f . g is equivalent to
f.compose(g) in Scala (recall that f.compose(g)(x) == f(g(x))). And f $ x is equivalent to
f x, but the $ has very low precedence and is just used to avoid having to introduce a level of
parentheses. This reads “backwards” from the typical OO chain of function calls, where we’d write
xs.map(f).filter(isEven).sum.

Type classes, monads, and do notation

Monad, Applicative, Functor, and all the other structures we discussed in part 3 exist in Haskell’s
standard library. The way they are encoded and used works differently than in Scala. Let’s start by
looking at what is called the class definition for Functor:

²²⁰http://www.haskell.org/haskellwiki/Eta_conversion
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class Functor f where

fmap :: (a -> b) -> (f a -> f b)

This is equivalent to the following interface definition in Scala:

trait Functor[F[_]] {

def fmap[A,B](f: A => B): F[A] => F[B]

}

Functor is called a type class (or ‘typeclass’) in Haskell. The name comes from the the fact that it
defines a class of types, not in the OO sense of the term ‘class’, but in the more general, mathematical
sense of a collection of objects whose members can be described in some formal way..

Let’s now look at how we declare an instance of Functor:

instance Functor Maybe where

fmap f Nothing = Nothing

fmap f (Just x) = Just (f x)

Whereas in Scala, we’d write:

val OptionFunctor = new Functor[Option] {

def fmap[A,B](f: A => B): Option[A] => Option[B] =

oa => oa match {

case None => None

case Some(a) => Some(f(a))

}

}

Notice that in Haskell, we aren’t naming the instance at all. We simply state “here is the Functor
instance for the type constructor Maybe”. We’ll see why this is in a minute.

The way we write code which is polymorphic in the choice of Functorworks differently in Haskell.
In Scala, wemight accept the Functor instance as an ordinary function parameter, possibly implicit.
(We might also just place the definition within the Functor trait.)

def strength[F[_],A,B](

a: A, fb: F[B])(implicit F: Functor[F]): F[(A,B)] =

F.fmap((b: B) => (a,b))(fb)

In Haskell, instances are not first-class values as they are in Scala. Instead, we accept Functor as a
constraint :
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strength :: Functor f => a -> f b -> f (a, b)

strength a fb = fmap (\b -> (a,b)) fb

-- Or, eta reduced:

-- strength a = fmap (\b -> (a,b))

Notice the call to fmap in the implementation doesn’t say which Functor instance it is referring
to! Instances are unnamed and the correct instance will be chosen based on type–for instance,
when calling strength 1 ["a", "b", "c"], the Functor for list will be supplied automatically.
Although Haskell frees the programmer from having to explicitly pass instances around in the
program, because instances are not first-class values and are selected based on type, we are limited
to supplying at most one instance for a given type. For instance, we can imagine multiple Monoid
instances on Int, one for addition, and one for multiplication. If Monoid is formulated as a class,
we can’t give both instances, as they overlap:

class Monoid a where

mempty :: a

mappend :: a -> a -> a

instance Monoid Int where

mempty = 0

mappend = (+) -- Syntax for referencing an infix operator

-- Not legal! Overlapping instance

instance Monoid Int where

mempty = 1

mappend = (*)

Note: No one particularly likes the names mempty and mappend, as they sound a little too specific to
lists, but these are the names used in the Haskell standard library definition of Monoid.

If both these instances were defined, we would have no way of distinguishing which one was
intended at the call site of a function like foldMap:

foldMap :: Monoid m => (a -> m) -> [a] -> m -- only takes two arguments, no way to specify\

the instance!

foldMap f = foldr mappend mempty . map f

Note: Haskell’s restriction on overlapping instances does come with another benefit. If we have
two Map k v values (Haskell’s ordered map implementation), it is safe to assume that both maps
were ordered using the same Ord k instance (Ord is Haskell’s typeclass for specifying ordering).
This is not in general a safe assumption to make in Scala, as the maps may have been built by two
different pieces of code, each of which locally used a different instance of Ordering (the Scala trait
for specifying ordering).
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In situations where we might otherwise define multiple overlapping instances, we can do one of two
things. We can switch to using ordinary values to represent the class. For Monoid, we can create a
type with a single data constructor, containing the identity and the operation:

Note: By convention, data types with a single constructor usually give the constructor the same
name as the type.

data Monoid a = Monoid a (a -> a -> a)

Or we can provide a wrapper type for Int, simply so Haskell’s type system can use this to select the
appropriate Monoid:

newtype Sum = Sum Int

newtype Product = Product Int

instance Monoid Sum where

mempty = Sum 0

mappend (Sum a) (Sum b) = Sum (a + b)

instance Monoid Product where

mempty = Product 1

mappend (Product a) (Product b) = Product (a * b)

Note that newtype Sum = Sum Int behaves just like data Sum = Sum Int, but its runtime
representation is the same as whatever is inside the newtype, in this case Int.

Let’s look at the class definition for Monad, and the Monad instance for Maybe and State. This
introduces a few new things:

class Monad f where

return :: a -> f a

(>>=) :: f a -> (a -> f b) -> f b

instance Monad Maybe where

return = Just

Nothing >>= _ = Nothing

Just x >>= f = f x

data State s a = State { runState :: s -> (a, s) }

instance Monad (State s) where

return a = State $ \s -> (a, s)

a >>= f = State $ \s0 -> case runState a s0 of

(ar, s1) -> runState (f ar) s1
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In Haskell, unit and flatMap are named return and >>= (pronounced ‘bind’). Notice that we didn’t
need to construct a type lambda like we did in chapter 11, we just partially applied the State type
constructor by leaving off its second parameter.

Haskell also includes an analogue of for-comprehension syntax, called do-notation. Here’s an
example:

main :: IO ()

main = do

putStr "Echo-inator v2.0"

s <- readLine

putStr s

This is equivalent to:

main =

putStr "Echo-inator v2.0" >>= \_ -> -- As in Scala, we use '_' for an ignored function p\

arameter

readLine >>= \s ->

putStr s

Unlike Scala’s for comprehensions, we aren’t required to end with a yield, and we don’t have to
extract a value from each monadic expression in the do block. Here’s the equivalent Scala:

def main = for {

_ <- putStr("Echo-inator v2.0")

s <- readLine

_ <- putStr(s)

} yield ()

Conclusion

This appendix has only scratched the surface of Haskell, but should provide you with a foundation
for reading papers, blog posts, and other resources that use Haskell. We recommend the Haskell
Wikibook²²¹ as a good reference for learning more of the details of Haskell’s syntax.

²²¹http://en.wikibooks.org/wiki/Haskell

http://en.wikibooks.org/wiki/Haskell
http://en.wikibooks.org/wiki/Haskell
http://en.wikibooks.org/wiki/Haskell
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