
Purely Functional I/O
in Scala

Rúnar Óli Bjarnason
@runarorama

Scala.IO, Paris 2013

Sunday, October 27, 13

What you should take
away from this talk

• You do not need side-effects to do I/O.

• Purely functional I/O really is pure.

• It is also practical.

• How it’s done and why it’s done that way.

Sunday, October 27, 13

“Purely functional”

A pure function of type (A => B)
takes an argument of type A
and returns a value of type B.

And does nothing else.

Sunday, October 27, 13

Pure functions

A pure function always returns the same value
given the same arguments.

Sunday, October 27, 13

Pure functions

A pure function has no dependencies other
than its arguments.

Sunday, October 27, 13

Pure functions

The result of calling a pure function can be
understood completely by looking at the

returned value.

Sunday, October 27, 13

Pure functions are

• Compositional

• Modular

• Testable

• Scalable

• Comprehensible

Sunday, October 27, 13

Pure functions are awesome. So why should
we resort to side effects when doing I/O?

Sunday, October 27, 13

Problems with I/O
side effects

• No separation of I/O code and logic

• Monolithic, non-modular, limited reuse

• Novel compositions are difficult

• Difficult to test

• Difficult to scale

Sunday, October 27, 13

class Cafe {
 def buyCoffee(cc: CreditCard): Coffee = {
 val cup = new Coffee()
 cc.charge(cup.price)
 cup
 }
}

Sunday, October 27, 13

class Cafe {
 def buyCoffee(cc: CreditCard, p: Payments): Coffee = {
 val cup = new Coffee()
 p.charge(cc, cup.price)
 cup
 }
}

Sunday, October 27, 13

class Cafe {
 def buyCoffee(cc: CreditCard): (Coffee, Charge) = {
 val cup = new Coffee()
 (cup, new Charge(cc, cup.price))
 }
}

Sunday, October 27, 13

The big idea

Instead of performing I/O as a side effect,
return a value to the caller that describes

how we want to interact with the I/O system.

In short: embed an I/O scripting language in Scala.

Sunday, October 27, 13

abstract class Program {
 final def main(args: Array[String]): Unit =
 Program.unsafePerformIO(pureMain(args))

 def pureMain(args: IndexedSeq[String]): IO[Unit]
}

object Program {
 private def unsafePerformIO[A](a: IO[A]): A = ???
}

Sunday, October 27, 13

getLine: IO[String]

putLine: String => IO[Unit]

Sunday, October 27, 13

“Do I have to change all my functions to use
IO[T] instead of T?”

Sunday, October 27, 13

trait IO[A] {
 def map[B](f: A => B): IO[B]

}

object IO {
 def pure[A](a: => A): IO[A]
}

Sunday, October 27, 13

trait IO[A] {
 def map[B](f: A => B): IO[B]

 def flatMap[B](f: A => IO[B]): IO[B]
}

object IO {
 def pure[A](a: => A): IO[A]
}

Sunday, October 27, 13

val ask: IO[Unit] = for {
 _ <- putLine("What is your name?")
 name <- getLine
 _ <- putLine("Hello, " ++ name)
} yield ()

Sunday, October 27, 13

val ask: IO[Unit] =
 putLine("What is your name?").flatMap { _ =>
 getLine.flatMap { name =>
 putLine("Hello, " ++ name)
 }
 }

Sunday, October 27, 13

Type safety

"Hello, " ++ getLine

error: type mismatch;
 found : IO[String]
 required: String
 "Hello, " ++ getLine
 ^

Sunday, October 27, 13

I/O monad

trait IO[A] {
 def map[B](f: A => B): IO[B] =
 flatMap(a => pure(a))

 def flatMap[B](f: A => IO[B]): IO[B]
}

object IO {
 def pure[A](f: => A): IO[A]
}

Sunday, October 27, 13

Monads

trait Monad[M[_]] {
 def flatMap[B](a: M[A])(f: A => M[B]): M[B]
 def pure[A](a: => A): M[A]
}

Sunday, October 27, 13

def sequence[A](ios: List[IO[A]]): IO[List[A]]

def traverse[A,B](as: List[A])(f: A => IO[B]): IO[List[B]]

def replicateM[A](n: Int, io: IO[A]): IO[List[A]]

def while(b: IO[Boolean]): IO[Unit]

def unzip(p: IO[(A,B)]): (IO[A], IO[B])

def join[A](a: IO[IO[A]]): IO[A]

Sunday, October 27, 13

val lines = List(
 "Háfrónskri og harðsoðinni",
 "hreintyngdur ég hefja megi",
 "brynfjörurpt með í mynni",
 "morgunmál á hverjum degi.")

val x = traverse(lines)(putLine)

Sunday, October 27, 13

What have we gained?

• Separation of I/O code from your logic

• Type safety

• First-class compositional I/O actions

• Algebraic reasoning

• Other benefits, depending on the
implementation

Sunday, October 27, 13

The deferred effects
model

class IO[A](run: () => A)

Sunday, October 27, 13

The deferred effects
model

object IOMonad extends Monad[IO] {
 def pure[A](a: => A) = new IO(() => a)
 def flatMap[A,B](ma: IO[A])(
 f: A => IO[B]): IO[B] =
 new IO { () => f(ma.run()).run() }
}

Sunday, October 27, 13

The world-as-state
model

class IO[A](run: RealWorld => (A, RealWorld))

Sunday, October 27, 13

The world-as-state
model

object IOMonad extends Monad[IO] {
 def pure[A](a: => A) = new IO(rw => (a, rw))
 def flatMap[A,B](ma: IO[A])(
 f: A => IO[B]): IO[B] =
 new IO { rw =>
 val (a, rw1) = ma.run(rw)
 f(a).run(rw1)
 }
}

Sunday, October 27, 13

Example actions

def io[A](a: => A): IO[A] =
 new IO(() => a)

def putLine(s: String): IO[Unit] =
 io(println(s))

def getLine: IO[String] =
 io(readLine)

Sunday, October 27, 13

Problems
• A function is totally opaque.

•RealWorld is a lie.

•Conflates programs hang or crash with
programs that remain productive.

•No story on concurrency.

•Haven’t really gained any testability.

•StackOverflowError

Sunday, October 27, 13

Free monad model

sealed trait IO[F[_],A] { ... }

case class Return[F[_],A](a: A) extends IO[F,A]

case class Req[F[_],I,A](
 i: F[I],
 k: I => IO[F,A]) extends IO[F,A]

Sunday, October 27, 13

Free monad

sealed abstract class IO[F[_],A] {
 def flatMap[B](f: A => IO[F,B]): IO[F,B] =
 this match {
 case Return(a) => f(a)
 case Req(r, k) =>
 Req(r, k andThen (_ flatMap f))
 }
 def map[B](f: A => B): IO[F,B] =
 flatMap(a => Return(f(a)))
}

Sunday, October 27, 13

Console-only I/O

sealed trait Console[A]
case object GetLine extends Console[String]
case class PutLine(s: String) extends Console[Unit]

type ConsoleIO[A] = IO[Console,A]

val getLine: ConsoleIO[String] =
 Req(GetLine, s => Return(s))

def putLine(s: String): ConsoleIO[Unit] =
 Req(PutLine(s), _ => Return(()))

Sunday, October 27, 13

A console program

val ask: ConsoleIO[Unit] = for {
 _ <- putLine("What is your name?")
 name <- getLine
 _ <- putLine("Hello, " ++ name)
} yield ()

Sunday, October 27, 13

A console program

val ask: ConsoleIO[Unit] =
 Req(PutLine("What is your name?"), _ =>
 Req(GetLine, name =>
 Req(PutLine("Hello, " ++ name), _ =>
 Return(()))))

Sunday, October 27, 13

Any-effect I/O

type AnyIO[A] = IO[Function0, A]

Sunday, October 27, 13

Running actions
trait ~>[F[_],G[_]] {
 def apply[A](f: F[A]): G[A]
}

sealed abstract class IO[F[_],A] {
 ...
 def runIO[G[_]:Monad](f: F ~> G): G[A] = {
 val G = implicitly[Monad[G]]
 this match {
 case Return(a) => G.unit(a)
 case Req(r, k) =>
 G.bind(f(r))(k andThen (_.runIO(f)))
 }
 ...
}

Sunday, October 27, 13

Running actions

type Id[A] = A

object SideEffect extends (Function0 ~> Id) {
 def apply[A](f: Function0[A]): A = f()
}

def unsafePerformIO[A](io: IO[Function0, A]): A =
 io.runIO(SideEffect)

Sunday, October 27, 13

Running actions

implicit object ConsoleEffect extends (Console ~> Id) {
 def apply[A](c: Console[A]): A =
 r match {
 case GetLine => readLine
 case PutLine(s) => println(s)
 }
}

Sunday, October 27, 13

Running actions

case class InOut(in: List[String], out: List[String])
case class State[A](runState: InOut => (A, InOut))

object PureConsole extends (Console ~> State) {
 def apply[A](c: Console[A]): State[A] =
 State(s => (c, s) match {
 case (GetLine, InOut(in, out)) =>
 (in.head, InOut(in.tail, out))
 case (PutLine(l), InOut(in, out)) =>
 ((), InOut(in, l :: out))
 })
}

Sunday, October 27, 13

Running actions
scala> val ask = for {
 | _ <- putLine("What is your name?")
 | name <- getLine
 | _ <- putLine("Hello, " ++ name)
 | } yield ()
ask: IO[Console, Unit] = IO@364032b7

scala> val s = ask.runIO(PureConsole)
s: State[Unit] = State(<function1>)

scala> val ls = s.runState(InOut(List("Alice"), Nil))
ls: InOut = InOut(Nil, List("Hello, Alice", "What is
your name?"))

Sunday, October 27, 13

Running actions
scala> val ask = for {
 | _ <- putLine("What is your name?")
 | name <- getLine
 | _ <- putLine("Hello, " ++ name)
 | } yield ()
ask: IO[Console, Unit] = IO@364032b7

scala> val s = ask.runIO(ConsoleEffect)
What is your name?

Sunday, October 27, 13

Concurrency story

type AsyncIO[A] = IO[Future, A]

Sunday, October 27, 13

Breakpoints

def runUntilFailure[F[_],A](io: IO[F,A])(f: F ~> Id):
 Either[(Throwable, IO[F,A]), A] =
 io match {
 case Return(a) => Right(a)
 case Req(r, k) => try {
 runUntilFailure(k(f(r)))(f)
 } catch {
 case e: Throwable => Left((e, io))
 }
 }

Sunday, October 27, 13

What have we gained?

• An IO data type that we can inspect and is
highly extensible.

• We can test programs without performing
their I/O actions (e.g. Console).

• Concurrency: We simply build
asynchronous requests into our F type.

Sunday, October 27, 13

StackOverflowError

• See Stackless Scala With Free Monads,
a paper from Scala Days 2012.
http://goo.gl/X0iO3M

• See also scalaz.Free

Sunday, October 27, 13

http://goo.gl/X0iO3M
http://goo.gl/X0iO3M

SOE Problem

for {
 x <- a
 y <- b
 ...
} yield ()

Sunday, October 27, 13

SOE Problem

a.flatMap(av =>
 b.flatMap(bv =>
 c.flatMap(cv =>
 d.flatMap(dv =>
 e.flatMap(ev =>
 ...

Sunday, October 27, 13

SOE Solution

sealed abstract class IO[F[_],A]

case class Pure[F[_],A](a: A) extends IO[F,A]

case class Request[F[_],I,A](
 req: F[I],
 k: I => IO[A]) extends IO[A]

case class FlatMap[F[_],A,B](
 sub: IO[F,A],
 k: A => IO[F,B]
) extends IO[F,B]

Sunday, October 27, 13

Practical Streaming I/O

• The scalaz-stream library

• Advanced Stream Processing in Scala
Paul Chiusano, NEScala 2013.

Sunday, October 27, 13

Streaming I/O
sealed abstract class Process[+F[_],+O]

case class Emit[+F[_],+O](
 o: Seq[O],
 k: Process[F[_],O]) extends Process[F,O]

case class Await[+F[_],I,+O](
 req: F[I],
 k: I => Process[F,O],
 fallback: Process[F,O],
 cleanup: Process[F,O]) extends Process[F,O]

case class Halt(e: Throwable)
 extends Process[Nothing,Nothing]

Sunday, October 27, 13

Conclusion

• Purely functional I/O is possible and
practical in Scala.

• It has a programming model vastly
superior to relying on side-effects.

• The less powerful the representation, the
more useful it is.

Sunday, October 27, 13

