Purely Functional I/0O
in Scala

Ranar Oli Bjarnason
@runarorama

Scala.!O, Paris 2013

What you should take
away from this talk

e You do not need side-effects to do 1/0.
e Purely functional I/0 really is pure.

e ltis also practical.

e How its done and why its done that way.

“Purely functional

A pure function of type (A => B)
takes an argument of type A
and returns a value of type B.

And does nothing else.

Pure functions

A pure function always returns the same value
given the same arguments.

Pure functions

A pure function has no dependencies other
than its arguments.

Pure functions

The result of calling a pure function can be
understood completely by looking at the
returned value.

Pure functions are

e Compositional

e Modular
e Testable

e Scalable

e Comprehensible

Pure functions are awesome. So why should
we resort to side effects when doing 1/0O?

Sunday, October 27, 13

Problems with I/0O
side effects

e No separation of |/O code and logic
e Monolithic, non-modular, limited reuse
e Novel compositions are difficult

e Difficult to test

e Difficult to scale

class ']
def buyCoffee(cc: CreditCard): Coffee = {

val cup = neu ()
cc.charge(cup.price)
cup
3
3

Sunday, October 27, 13

class ']
def buyCoffee(cc: CreditCard, p: Payments): Coffee = {

val cup = neu ()
p.charge(cc, cup.price)
cup
3
3

Sunday, October 27, 13

class ']

def buyCoffee(cc: CreditCard): (,) = 1
val cup = neu ()
(cup, neu (cc, cup.price))
3
3

Sunday, October 27, 13

The big idea

Instead of performing I/O as a side effect,
return a value to the caller that describes
how we want to interact with the 1/0 system.

In short: embed an 1/0 scripting language in Scala.

abstract class Program {
final def main(args: Array[sString]): Unit =
Program.unsafePerformIO(pureMain(args))

def pureMain(args: IndexedSeqg[String]): IO[Unit]
3

object Program §
private def unsafePerformIO[A](a: IO[A]): A = 2?7
3

Sunday, October 27, 13

getLine: IO[String]

putLine: String => IO[Unit]

Sunday, October 27, 13

“Do | have to change all my functions to use
10/ T] instead of T?"

trait i
def map[B](f: A => B): IO[B]

3

object ']
def pure[A](a: => A): IO[A]
3

trait I0[A] §
def map[B](f: A => B): IO[B]

def flatMap[B](f: A => IO[B]): IO[B]
3

object 10 §
def pure[A](a: => A): IO[A]
3

val ask: I0[Unit] = for {
B <- putLine("What is your name?")
name <- getLine
B <- putLine("Hello, ™ ++ name)

3 yield ()

Sunday, October 27, 13

val ask: IO[Unit] =
putLine("What is your name?").flatMap { =
getLine.flatMap { name =>
putLine("Hello, " ++ name)

3
3

Sunday, October 27, 13

Type safety

"Hello, ™ ++ getLine
found : IO[String]
required: String
“Hello, ™ ++ getLine

Sunday, October 27, 13

/O monad

trait i
def map[B](f: A => B): IO[B] =
flatMap(a => pure(a))

def flatMap[B](f: A => I0[B]): IO[B]
3

object ']
def pure[A](f: => A): IO[A]
3

Sunday, October 27, 13

Monads

trait i
def flatMap[B](a: M[A])(f: A => M[B]): M[B]
def pure[A](a: => A): M[A]

3

Sunday, October 27, 13

def sequence[A](ios: List[IO[A]]): IO[List[A]]

def traverse[A,B](as: List[A])(f: A => I0[B]): IO[List[B]]
def replicateM[A](n: Int, io: IO[A]): IO[List[A]]

def while(b: IO[Boolean]): IO[Unit]

def unzip(p: I0[(A,B)]): (I0[A], IO[B])

def join[A](a: IO[IO[A]]): IO[A]

Sunday, October 27, 13

val lines = List(
"Hafronskri og hareésoéinni”,
"hreintyngdur eq hefja megqgi®”,

“brynf jorurpt meo 1 mynni”,
"morgunmal a hverjum degi.")

val x = traverse(lines)(putLine)

Sunday, October 27, 13

What have we gaineq?

e Separation of I/0 code from your logic
e Type safety
e First-class compositional I/O actions

e Algebraic reasoning

e Other benefits, depending on the
implementation

The deferred effects
model

class (run: () => A)

The deferred effects
model

object extends {
def pure[A](a: => A) = new I0(() => a)
def flatMap[A,B](ma: IO[A])(
f: A => I0[B]): I0[B] =
neu f O = f(ma.run()).run() }

3

The world-as-state
model

class (run: Realllorld => (A,))

The world-as-state
model

object extends {
def pure[A](a: => A) = new I0(rw => (a, ru))
def flatMap[A,B](ma: I0[A])(
f: A = I0[B]): IO[B] =
new fru=
val (a, rul) = ma.run(ruw)
f(a).run(ruwl)
3

3

Example actions

def io[A](a: => A): IO[A] =
new I0(() => a)

def putLine(s: String): IO[Unit] =
io(printin(s))

def getLine: IO[String] =
io(readLine)

Problems

e A function is totally opaque.
® Realllorldisalie.

e Conflates programs hang or crash with
programs that remain productive.

® No story on concurrency.

® Haven'treally gained any testability.

e StackOverflowError

Free monad model

sealed trait i ...}
case class (a: A) extends
case class (

i: F[I],

k: I = I0[F,A]) extends

Free monad

sealed abstract class ']
def flatMap[B](f: A => IO0[F,B]): IO[F,B] =
this match §
case CIREIC)
case (r, k) =
(r, k andThen (flatMap f))
3

def map[B](f: A => B): IO[F,B] =
flatMap(a = (F(a)))
3

Sunday, October 27, 13

Console-only I/O

sealed trait Console[A]
case object GetLine extends Console[String]
case class PutLine(s: String) extends Console[Unit]

type ConsoleIO[A] = IO[Console,A]

val getLine: ConsoleIO[String] =
Req(GetLine, s => Return(s))

def putLine(s: String): ConsoleIO[Unit] =
Req(PutLine(s), _ => Return(()))

Sunday, October 27, 13

A console program

val ask: ConsoleIO[Unit] = for {
B <- putLine("What is your name?")
name <- getLine
B <- putLine("Hello, ™ ++ name)

3 yield ()

A console program

val ask: ConsoleIO[Unit] =

(("What is your name?"), =
(, name =>
(("Hello, ™ ++ name), _ =>

(0)))))

Any-effect |/O

type

Sunday, October 27, 13

Running actions

trait {
def apply[A]l(f: F[A]): G[A]
3
sealed abstract class ']

&é% runIO[G[]:Monad](f: F ~> G): G[A] = {

val G = implicitly| |
this match §
case (a) => G.unit(a)
case (r, k) =

G.bind(f(r))(k andThen (_.runIO(f)))
3

Running actions

type =

object extends (o)) §
def apply[A](f: Function0[A]): A = f()

3

def unsafePerformIO[A](io: IO[Function®, A]): A =
io.runIo()

Running actions

implicit object extends (> Td) §
def apply[A](c: Console[A]): A =
r match {
case => readLine
case (s) => printin(s)
3

3

Running actions

case class InOut(in: List[String], out: List[String])
case class State[A](runState: InOut => (A, InOut))

object PureConsole extends (Console ~> State) {
def apply[A](c: Console[A]): State[A] =
State(s => (c, s) match §
case (GetLine, InOut(in, out)) =
(in.head, InOut(in.tail, out))
case (PutLine(1), InOut(in, out)) =
(), InOut(in, 1 :: out))
3)

Sunday, October 27, 13

Running actions

scala> val ask = for {
| <(- putLine("HWhat is your name?")
| name <- getLine
| <- putLine("Hello, " ++ name)

| 3 yield ()
ask: I0[Console, Unit] = 10@364032b7

ask .runI0O(PureConsole)
State(<functionl>)

scala> val s =
s: State[Unit]

scala> val 1s = s.runState(InOut(List("Alice™), Nil))
Is: InOut = InOut(Nil, List("Hello, Alice”, "What is
your name?"))

Sunday, October 27, 13

Running actions

val ask = for {
B <- putLine("What is your name?")
name <- getLine
B <- putLine("Hello, ™ ++ name)
§ yield ()
I0[Console, Unit]

val s = ask.runIO()
What 1s your name?

Sunday, October 27, 13

Concurrency story

type

Breakpoints

def runUntilFailure[F[],A](io: IO[F,A])(f: F ~> Id):
Either|[(Throuwable, I0[F,A]), A] =
io match §
case (a) = (a)
case (r, k) => try {
runUntilFailure(k(f(r)))(f)
} catch §
case e: Throuable => (CRR))

3
3

Sunday, October 27, 13

What have we gaineq?

e An 10 data type that we can inspect and is
highly extensible.

e We can test programs without performing
their I/0 actions (e.g. Consol e).

e Concurrency: We simply build
asynchronous requests into our F type.

StackOverflowError

o See Stackless Scala With Free Monads,

a paper from Scala Days 2012.
http://g9o0.gl1/X0103M

e Seealsoscalaz.Free

http://goo.gl/X0iO3M
http://goo.gl/X0iO3M

SOE Problem

SOE Problem

a.flatMap(av =>
b.flatMap(bv =>
c.flatMap(cv =
d.flatMap(dv =>
e.flatMap(ev =>

SOE Solution

sealed abstract class
case class (a: A) extends

case class (
req: F[I],
k: T => I0[A]) extends

case class (
sub: I0[F,A],
k: A => IO[F,B]

) extends

Sunday, October 27, 13

Practical Streaming 1/0

e The scalaz-stream library

e Advanced Stream Processing in Scala
Paul Chiusano, NEScala 2013.

Streaming |/0O

sealed abstract class Process[+F[],+0]

case class Emit[+F[],+0](
0: Seq[0],
k: Process[F[],0]) extends Process|[F,0]

case class Auait[+F[],I,+0](
req: F[I],
k: I => Process|[F,0],
fallback: Process|[F,0],
cleanup: Process|[F,0]) extends Process|[F,0]

case class Halt(e: Throuwable)
extends Process|[Nothing,Nothing]

Sunday, October 27, 13

Conclusion

e Purely functional I/0 is possible and
practical in Scala.

e It has a programming model vastly
superior to relying on side-effects.

e The less powerful the representation, the
more useful it is.

