
Stackless Scala With Free Monads

Rúnar Óli Bjarnason

runarorama@gmail.com

Abstract
Tail call elimination (TCE) in the Scala compiler is limited
to self-recursive methods, but tail calls are otherwise not
eliminated. This makes functions composed of many smaller
functions prone to stack overflows. Having a general TCE
mechanism would be a great benefit in Scala, particularly
for functional programming. Trampolining is a popular tech-
nique [6], which can be used for TCE in languages that don’t
support it natively. This paper gives an introduction to tram-
polines in Scala and expands on this solution to gain elimi-
nation of any method call whatsoever, even calls that are not
in tail position at all. This obviates altogether the use of the
call stack in Scala programs.

1. Introduction
Since the call stack is a limited resource of the virtual ma-
chine, most programmers who have some experience with
Scala will have come up against the problem of a seemingly
reasonable function running out of stack and crashing the
program with a StackOverflowError.

As a practical example, consider traversing a list while
maintaining some state. We will use the State data type,
which represents a transition function in a simple state ma-
chine.

case class State[S,+A](runS: S => (A,S)) {

def map[B](f: A => B) =

State[S, B](s => {

val (a,s1) = runS(s)

(f(a),s1)

})

def flatMap[B](f: A => State[S,B]) =

State[S,B](s => {

val (a,s1) = runS(s)

f(a) runS s1

})

}

Submitted to The Third Scala Workshop, London, Apr 17th 2012.

The runS function takes some input state of type S and
outputs a value of type A together with a new state. The map
and flatMap methods allow us to thread the state through
a for-comprehension, in order to write imperative-looking
programs using State combinators such as these:

def getState[S]: State[S,S] =

State(s => (s,s))

def setState[S](s: S): State[S,Unit] =

State(_ => ((),s))

def pureState[S, A](a: A): State[S, A] =

State(s => (a,s))

Note that pureState and flatMap together make State
a monad [4].

As a simple demonstration, let us write a function that
uses State to number all the elements in a list. Not because
this is a compelling use case for State, but because it’s
simple and it demonstrates the stack overflow.

def zipIndex[A](as: List[A]): List[(Int ,A)] =

as.foldLeft(

pureState[Int , List[(Int ,A)]](List ())

)((acc ,a) => for {

xs <- acc

n <- getState

_ <- setState(n + 1)

} yield (n,a)::xs).runS (0)._1.reverse

We use a left fold to emphasize that the traversal of the
list is tail-recursive. The fold builds up a state action that
starts with an empty list and adds successive elements to the
front, reversing the original list. The state is an integer that
we increment at each step, and the whole composite state
action is run starting from zero before returning the reverse
of the result.

But when zipIndex is called, it crashes with a Stack-
OverflowError in State.flatMap if the number of ele-
ments in the list exceeds the size of the virtual machine’s
call stack. The reason is that the state action itself is a func-
tion composed of a number of smaller functions proportional
to the length of the list. Even though we think of it as a se-
quence of discrete steps, each step calls the next step in a
way that the compiler can’t optimize.

It would seem that this seriously limits the utility of
functional programming in Scala. This paper will explore
the space of solutions to this problem:

• In section 3, we will discuss the well-known technique of
trampolining. In a trampolined program, instead of each
step calling the next, functions yield the next step to a
single control loop known as the trampoline. This allows
us to programmatically exchange stack for heap.

• We will then expand on this technique by adding an op-
erational monad (section 4), which allows us to turn any
call whatsoever into a tail call that can be subsequently
eliminated. That will be the main contribution of this pa-
per.

• There is a subtle detail in the implementation of this
monad such that if it is not implemented correctly it will
continue to overflow the stack in some cases. In section
4.3 we will look at what those cases are and how to render
them harmless.

• Trampolined programs can be interleaved, providing a
model of cooperative coroutines. We will see this in ac-
tion in section 5.

• In section 6, we generalize trampolines to a free monad,
an extremely versatile recursive data structure. We look
at some functions that operate on all such structures (6.1)
and find that the work we have already done for trampo-
lines gives us the same benefits for all free monads.

2. Background: Tail-call elimination in Scala
The Scala compiler is able to optimize a specific kind of
tail call known as a self-recursive call. For example, the
following definition of a left fold over a list is optimized by
the compiler to consume a constant amount of stack space:

def foldl[A,B](as: List[A], b: B,

f: (B,A) => B): B =

as match {

case Nil => b

case x :: xs => foldl(xs, f(b,x), f)

}

When the compiler finds that a method calls itself in
the tail position, and if that method cannot be overridden
(e.g. because of being declared private or final), the
recursive method invocation is replaced with a simple jump
in the compiled code. This is equivalent to rewriting the tail-
recursion as a loop:

def foldl[A,B](as: List[A], b: B,

f: (B,A) => B): B = {

var z = b

var az = as

while (true) {

az match {

case Nil => return z

case x :: xs => {

z = f(z, x)

az = xs

}

}

}

z

}

This kind of optimization has two advantages: a jump
is much faster than a method invocation, and it requires no
space on the stack.

But while optimizing self-recursive calls is easy, replac-
ing tail calls in general with jumps is more difficult. Cur-
rently, the Java virtual machine (JVM) allows only local
jumps, so there is no way to directly implement a tail call
to another method as a jump. For example, this mutual re-
cursion cannot be optimized by the compiler, even though
the calls are in tail position:

def even[A](ns: List[A]): Boolean =

ns match {

case Nil => true

case x :: xs => odd(xs)

}

def odd[A](ns: List[A]): Boolean =

ns match {

case Nil => false

case x :: xs => even(xs)

}

These functions will overflow the call stack if the argu-
ment list is larger than the stack size.

Although a future JVM may implement explicit support
for tail calls in the bytecode, this is not without hurdles
and may not be as useful as it sounds. For instance, the
execution model of the JVM requires the state of each thread
of execution to be stored on the thread’s stack. Furthermore,
exception-handling is implemented by passing an exception
up the call stack, and the JVM exposes the stack to the
programmer for inspection. In fact, its security model is
implemented by looking at permissions granted to each stack
frame individually. This, coupled with subclassing, dynamic
dispatch, and just-in-time compilation conspires to make
tail call optimization in the Scala compiler itself difficult to
implement.

Fortunately we can sidestep all of those issues. There is a
way that we can mechanically trade stack for heap by using
a simple data structure.

3. Trampolines: Trading stack for heap
We begin with a very basic Trampoline data type. This
is identical in spirit to but differs in implementation from
scala.util.control.TailCalls.TailRec.

sealed trait Trampoline [+A] {

final def runT: A =

this match {

case More(k) => k(). runT

case Done(v) => v

}

}

case class More[+A](k: () => Trampoline[A])

extends Trampoline[A]

case class Done[+A](result: A)

extends Trampoline[A]

A Trampoline represents a computation that can be
stepped through, and each step can have one of two forms.
A step of the form Done(v) has a value v to return and there
are no more steps in that case. A step of the form More(k)

has more work to do, where k is a closure that does some
work and returns the next step. The runT method is a simple
tail-recursive method that executes all the steps. It is made
final so that Scala can eliminate the tail call.

This solves the mutual recursion problem we saw earlier.
All we have to do is mechanically replace any return type
T with Trampoline[T]. Here are odd and even, modified
this way:
def even[A](ns: List[A]): Trampoline[Boolean] =

ns match {

case Nil => Done(true)

case x :: xs => More (() => odd(xs))

}

def odd[A](ns: List[A]): Trampoline[Boolean] =

ns match {

case Nil => Done(false)

case x :: xs => More (() => even(xs))

}

Instead of recursing directly, the functions now return
the next step as a Trampoline which can be executed tail-
recursively by calling its runT method. This no longer over-
flows the stack, no matter how large the argument lists are.

4. Making every call a tail call
Let’s see if we can apply the Trampoline solution to the
problem of traversing a list with State from before. We
need to change the representation of State actions to return
a trampoline that we can run tail-recursively:
case class State[S,+A](

runS: S => Trampoline [(A,S)])

How do we now implement the flatMap method for
composing State actions? We could try this:
def flatMap[B](f: A => State[S,B]) =

State[S,B](s => More (() => {

val (a,s1) = runS(s).runT

More (() => f(a) runS s1)

}))

But that turns out to be insufficient. The zipIndex exam-
ple from section 1 will still overflow the stack for large lists,
this time for even smaller lists. The problem is that the call
to runT is not in the tail position, so it can’t be optimized or
wrapped in a Trampoline.

4.1 A Trampoline monad?
We will attempt to solve this by making Trampoline

monadic. It already has a monadic unit1, which is the Done

constructor. All it needs is monadic bind, which is flatMap.
Let’s add a flatMap method directly to Trampoline, so we
can do this in State.flatMap:

1 A unit for a monad M is a function of type A => M [A], for all A. It is
a unit in the sense that passing it to flatMap is an identity.

def flatMap[B](f: A => State[S,B]) =

State[S,B](s => More (() => runS(s) flatMap {

case (a,s1) => More (() => f(a) runS s1)

}))

That’s a definite improvement. It shifts the problem into
the flatMap method for Trampoline, which we might be
tempted to implement like this:

def flatMap[B](f: A => Trampoline[B]) =

More[B](() => f(runT))

But that is not what we want. The call to runT is not in a
tail position there either. It seems that no matter what we try
it’s simply not possible to implement a flatMap method for
Trampoline that doesn’t require any additional stack.

4.2 Building the monad right in
The way around this limitation is to add a constructor to the
Trampoline data type, changing flatMap from a method
call to a constructor call:

case class FlatMap[A,+B](

sub: Trampoline[A],

k: A => Trampoline[B]) extends Trampoline[B]

A trampoline of this form can be thought of as a call to a
subroutine sub whose result is returned to the continuation
k.

The Trampoline trait’s runT method must now take this
new constructor into account. To simplify, let’s separate the
concern of advancing to the next step from the concern of
running all the steps:

final def resume:

Either [() => Trampoline[A], A] =

this match {

case Done(v) => Right(v)

case More(k) => Left(k)

case FlatMap(a,f) => a match {

case Done(v) => f(v). resume

case More(k) => Left (() =>

FlatMap(k(), f))

case FlatMap(b,g) => (FlatMap(b,

(x:Any) => FlatMap(g(x), f)

): Trampoline[A]). resume

}

}

final def runT: A = resume match {

case Right(a) => a

case Left(k) => k(). runT

}

The resume method proceeds by pattern matching on the
Trampoline, returning either the result (on the Right) or
the next step as a Function0 (on the Left).

The way we handle the FlatMap(a,f) case here is subtle
but important. We match on the subroutine call a, and if
it’s Done, we simply run the continuation. If it’s wrapped
in a More constructor, we advance by one step and FlatMap

over that. If the subroutine call itself contains a subroutine
call, we have a left-associated nesting of FlatMaps in an
expression like this:

FlatMap(FlatMap(b, g), f)

It’s critical to resolve this case in such a way that remains
productive without introducing new stack frames. The trick
is to re-associate the expression to the right:

FlatMap(b, x => FlatMap(g(x), f))

When we do that, the next iteration will pattern match on
b, and so we are able to make a productive tail call to resume
again.

Since the call to resume is on FlatMap here, we must
cast explicitly to Trampoline for the compiler to be able to
figure out that this is in fact a tail-recursive self-call2. Don’t
worry, we will get rid of this cast in section 4.3.

Also note that when we look inside the nested FlatMap

constructors, there is some type information that has been
lost. In a pattern like FlatMap(FlatMap(b, g), f) the
type of b cannot be known, so we must assume Any when
we construct the right-associated nesting. This is perfectly
safe, since we can assume the left-associated nesting was
well typed when it was constructed.

This re-association is taking advantage of the monad
laws. Trampoline is a monad, and monads are by definition
associative. Therefore the right-associated continuations are
always exactly equivalent to the left-associated ones.

4.3 An easy thing to get wrong
There is one more corner case to consider here. It’s now
possible for resume to overflow the stack if the left-leaning
tower of FlatMaps is taller than the call stack. Then the
call f(v) will make the call g(x), which will make another
inner call, etc. We avoid this by disallowing the construction
of deeply nested left-associated binds in the first place. We
make the FlatMap constructor private, exposing instead
the flatMap method on Trampoline, which we rewrite to
always construct right-associated binds:

def flatMap[B](

f: A => Trampoline[B]): Trampoline[B] =

this match {

case FlatMap(a, g) =>

FlatMap(a, (x: Any) => g(x) flatMap f)

case x => FlatMap(x, f)

}

To close the gap, we must also prevent the resume

method from constructing such a tower, by replacing calls to
the FlatMap constructor with calls to the flatMap method:

case FlatMap(a,f) => a match {

case Done(v) => f(v). resume

case More(k) => Left (() => k() flatMap f)

case FlatMap(b,g) =>

b.flatMap ((x:Any) => g(x) flatMap f). resume

}

2 Since the runT method is declared final, there is no theoretical reason
that the recursive call could be dispatched on a different class. It’s possible
that a future version of Scala will automatically infer this typecast.

Finally, in order to use our Trampoline monad with
Scala’s for-comprehensions we also need to implement
map, which is of course just defined in terms of flatMap:
def map[B](f: A => B): Trampoline[B] =

flatMap(a => Done(f(a)))

4.4 Stackless Scala
The zipIndex method from before can now run without a
StackOverflowError, for any size of input list, by using the
trampolined State monad.

Trampoline as presented here is a general solution to
stack frame elimination in Scala. We can now rewrite any
program to use no stack space whatsoever. Consider a pro-
gram of this form:
val x = f()

val y = g(x)

h(y)

It can very easily be rewritten this way:
for {

x <- f()

y <- g(x)

z <- h(y)

} yield z

Given the following implicit definition:
implicit def step[A](a: => A): Trampoline[A] =

More (() => Done(a))

The only kind of call where the step transformation is
inappropriate is (not coincidentally) in a self-recursive call.
These are easy to detect, and in those cases we could call the
More constructor explicitly, as in this recursive function to
find the nth Fibonacci number:
def fib(n: Int): Trampoline[Int] =

if (n <= 1) Done(n) else for {

x <- More (() => fib(n-1))

y <- More (() => fib(n-2))

} yield x + y

Since this transformation is completely mechanical, we
can imagine that one could write a compiler plugin or other-
wise augment the Scala compiler to transform all programs
this way.

5. Cooperative multitasking
We’ve seen how it’s possible to compose Trampoline com-
putations sequentially using flatMap. But it’s also possible
to compose them in parallel by interleaving computations:
def zip[B](b: Trampoline[B]): Trampoline [(A,B)] =

(this.resume , b.resume) match {

case (Right(a), Right(b)) =>

Done((a, b))

case (Left(a), Left(b)) =>

More (() => a() zip b())

case (Left(a), Right(b)) =>

More (() => a() zip Done(b))

case (Right(a), Left(b)) =>

More (() => Done(a) zip b())

}

To see this in action, we can introduce side-effects to print
to the console:
val hello: Trampoline[Unit] = for {

_ <- print("Hello , ")

_ <- println("World!")

} yield ()

And we can see what happens if we interleave this com-
putation with itself:
scala > (hello zip hello).runT

Hello , Hello , World!

World!

While this is parallelism with a single thread, it’s easy to
imagine distributing work among many threads. For a set of
trampolines under execution, any trampoline that is not Done
could be resumed by any available thread.

It turns out that this generalizes to a model of full sym-
metric coroutines. We will discuss that generalization in the
next section.

6. Free Monads: A Generalization of
Trampoline

We can think of Trampoline as a coroutine that may be sus-
pended in a Function0 and later resumed. But this is not the
only type constructor that we could use for the suspension.
If we abstract over the type constructor, we get the following
data type:
sealed trait Free[S[+_],+A] {

private case class FlatMap[S[+_],A,+B](

a: Free[S,A],

f: A => Free[S,B]) extends Free[S,B]

}

case class Done[S[+_],+A](a: A)

extends Free[S,A]

case class More[S[+_],+A](

k: S[Free[S,A]]) extends Free[S,A]

Now, Trampoline can be defined simply as:
type Trampoline [+A] = Free[Function0 , A]

As evidenced by the Done and FlatMap data constructors
above, Free[S,A] is a monad for any covariant functor S.
Seen categorically, it is precisely the free monad generated
by that functor [4].

When we say that S must be a functor, we mean more
precisely that there must exist an instance of Functor[S]3:
trait Functor[F[_]] {

def map[A,B](m: F[A])(f: A => B): F[B]

}

For Function0 this is straightforward:
implicit val f0Functor =

new Functor[Function0] {

def map[A,B](a: () => A)(f: A => B) =

() => f(a())

}

3 This trait is taken from version 7 of the Scalaz library [2]

6.1 Functions defined on all free monads
To make concrete the claim that all free monads can benefit
from the work we already did, we can generalize the meth-
ods previously defined for Trampoline. For example, here
is the general form of resume:
final def resume(implicit S: Functor[S]):

Either[S[Free[S, A]], A] =

this match {

case Done(a) => Right(a)

case More(k) => Left(k)

case a FlatMap f => a match {

case Done(a) => f(a). resume

case More(k) => Left(S.map(k)(_ flatMap f))

case b FlatMap g => b.flatMap ((x: Any) =>

g(x) flatMap f). resume

}

}

Note that this definition is essentially the same as the one
for Trampoline. The only differences are the type signa-
ture, the additional implicit Functor argument, and the fact
that we have replaced explicit construction of Function0
with calls to map for our functor. This is also true for the gen-
eralized implementations of zip, map, and flatMap [10].
Here is zip:
def zip[B](b: Free[S,B])(

implicit S: Functor[S]): Free[S, (A,B)] =

(resume , b.resume) match {

case (Left(a), Left(b)) =>

More(S.map(a)(x =>

More(S.map(b)(y => x zip y))))

case (Left(a), Right(b)) =>

More(S.map(a)(x => x zip Done(b)))

case (Right(a), Left(b)) =>

More(S.map(b)(y => Done(a) zip y))

case (Right(a), Right(b)) =>

Done((a, b))

}

6.2 Common data types as free monads
Informally, we can view Free[S,A] as the type of any com-
putation that may branch by some functor S and terminate
with some data of type A at the leaves. To gain an intuition
for this, consider the ordinary binary decision tree. It is a
free monad whose functor ”splits” the computation in two at
every branch:
type Pair[+A] = (A,A)

type BinTree [+A] = Free[Pair , A]

The Done case for BinTree[A] is a leaf that holds a
value of type A, while the More case is a branch holding
two values of type BinTree[A]. Our free monad (by the
FlatMap case) lets us take every leaf in a tree, apply a
tree-producing function to it, and graft the resulting tree in
place of that leaf. And because this is an instance of Free,
the work we already did on Trampoline lets us do so in
constant time and stack space.

To get a tree with any number of possible branches at
each node instead of just two, we would branch by the List
functor:

type Tree[+A] = Free[List , A]

Indeed, List itself can be expressed as an application of
Free4:

type List[A] =

Free [({ type λ[+α] = (A, α)})#λ, Unit]

In this view, a List[A] is a coroutine that produces a
value of type A each time it resumes, or Unit if it’s the
empty list. The action of the free monad here is not the
action of the ”list monad” as such (whose monadic bind
would substitute a new list for every element in the list), but
a monad that lets us append one list to another5. Again, since
it is an application of Free, we can perform that operation
in constant time and space.

The List type given here is invariant in its type argument,
but could be made covariant. This is left as an exercise.

6.3 A free State monad
While the examples of free monads presented here are very
simple, the suspension functor for a free monad could be of
arbitrary complexity. It could produce outputs and expect in-
puts in any conceivable combination. We could, for example,
model State as a little language, where we can get and set
the state:

sealed trait StateF[S,+A]

case class Get[S,A](f: S => A)

extends StateF[S,A]

case class Put[S,A](s: S, a: A)

extends StateF[S,A]

In the Get constructor, f is a function that expects the
current value of the state. In the Put constructor, s is the
new state, and a is the rest of the computation (that may
conceivably do something with that state).

We will need evidence that our data type is in fact a
functor:

implicit def statefFun[S] =

new Functor [({ type λ[+α] = StateF[S,α]})#λ] {

def map[A,B](m: StateF[S, A])(f: A => B) =

m match {

case Get(g) => Get((s:S) => f(g(s)))

case Put(s, a) => Put(s, f(a))

}

}

We can then encode a State-like monad directly as the
free monad generated by our StateF functor:

type FreeState[S,+A] =

Free [({ type λ[+α] = StateF[S,α]})#λ, A]

4 This definition uses a ”type lambda”, which is defining a type construc-
tor inline and simultaneously using it. An anonymous structural type is
declared in parentheses and a single type constructor λ is defined as its
member. The λ member is then projected out inline using the # syntax.
5 The free structure being generated by the λ functor here is technically the
free monoid generated by A.

The pureState combinator from section 1 comes ”for
free” with the Done constructor of our free monad6:

def pureState[S,A](a: A): FreeState[S,A] =

Done(a)

And the other two, for getting and setting the state, are
easy to define:

def getState[S]: FreeState[S,S] =

More(Get(s => Done(s)))

def setState[S](s: S): FreeState[S,Unit] =

More(Put(s, Done (())))

To run the state action given an initial state is a simple
loop:

def evalS[S,A](s: S, t: FreeState[S,A]): A =

t.resume match {

case Left(Get(f)) => evalS(s, f(s))

case Left(Put(n, a)) => evalS(n, a)

case Right(a) => a

}

We can now write pure functions that keep some state in
this monad. For example, here is zipIndex from section 1,
this time using our FreeState monad:

def zipIndex[A](as: List[A]): List[(Int ,A)] =

evalS(0, as.foldLeft(

pureState[Int , List[(Int ,A)]](List ())) {

(acc , a) => for {

xs <- acc

n <- getState

_ <- setState(n + 1)

} yield (n,a)::xs}). reverse

The implementation is almost identical, and this runs in
constant stack without having to go through Trampoline.
The conclusion is that it’s not always necessary or desirable
to trampoline an existing data structure. We can invent new
free monads of our own design à la carte (see 7.4) and reap
the same benefits.

7. Existing work
Nothing presented here is particularly original, although the
pieces are taken from various sources and have not been put
together in this way before to my knowledge, particularly
not in Scala.

7.1 Trampolines
Using trampolined functions to implement tail calls in stack-
oriented languages is a well-known technique, implemented
in many languages as libraries or in compilers [6].

The standard Scala library [1] (as of this writing, at ver-
sion 2.9.1) includes a package named TailCalls that pro-
vides a data structure TailRec, which is a limited equiv-
alent of the Trampoline in this paper. Notably missing are
monadic functions such as map and flatMap. This paper has

6 As of this writing the Scala compiler is unable to infer the type arguments
to the More and Done constructors in these definitions. Type annotations
are omitted here for clarity.

presented how they might be implemented if added and why
they would be implemented that way.

7.2 Operational monads
This paper’s implementation of free monads has monadic
bind reified on the heap as a data constructor rather than
a method call on the stack. This allowed us to manipulate
binds as data and perform re-association. We can refer to
this technique as using an operational monad, based on
work by Apfelmus [3]. He discusses monads that represent
programs with an explicit reified stack but not free monads
or trampolines as presented here.

Our FreeState monad is also an operational monad,
explicitly reifying the two operations Get and Put.

7.3 Free monads and coroutines
The idea of generalizing trampolines came from Corou-
tine Pipelines by Blažević in the October 2011 issue of
The Monad Reader [5]. Although he makes no explicit
reference to free structures, it’s clear that his Coroutine

type is a monad transformer incarnation of Free. In the
present implementation in Scala, it’s necessary to forego
the parameterization on an additional monad, in order to
preserve tail call elimination. Instead of being written as
a monad transformer itself, Free could be transformed
by a monad transformer for the same effect. For exam-
ple Coroutine[A,({type λ[α]=State[S,α]})#λ,B]
becomes StateT[S,({type λ[α]=Free[A,α]})#λ,B],
given:

case class StateT[S,M[_],A](run: S => M[(A,S)])

Blažević’s discussion goes into much more detail about
the kinds of cooperating coroutines that are expressible as
free monads, with producers, consumers, and transducers
between them.

7.4 The expression problem
The idea of the FreeState monad, modeling state transi-
tions using the coproduct of Get and Put is taken from
Wouter Swiestra’s 2008 paper Data types à la carte [11].
Swiestra uses the free monad to construct ad-hoc recur-
sive data types from the coproduct of arbitrary functors, and
Haskell type classes to handle the dispatch on different cases
of the coproduct.

7.5 Codensity
The act of associating all monadic binds to the right can
be understood as an application of codensity [4]. This key
insight came from a discussion with Ed Kmett on his work
with an I/O data structure expressed as a free monad [7].

Janis Voigtländer discusses codensity of free monads in
his paper Asymptotic Improvement of Computations over
Free Monads [12] although he does not explicitly name
the concept ”codensity”. The goal of his paper is not to
conserve stack space as such, but to improve performance.

Voigtländer explains how descending into left-associated
binds in a free monad has a quadratic overhead, and he
proceeds to eliminate this overhead by using a codensity
monad.

7.6 Iteratees
Safe and modular incremental I/O has long been elusive in
purely functional languages such as Haskell. Oleg Kiselyov
and John Lato discuss the idea of an iteratee, a pure automa-
ton that consumes input, produces effects, and may maintain
some internal state [9] [8].

Iteratees are not exactly free monads, but they are the
composition of a free monad with another functor, so they
can be expressed as an application of Free. The IterV type
in Lato’s article can be very roughly expressed as follows:

type IterV[I,O] =

Free [({ type λ[α] = I => α})#λ, (I,O)]

Because IterV tracks the remainder of the input (much
like a parser), it is not technically free. But the article also
discusses an ”internal iterator” they call enumeratee, which
converts one stream of inputs to a stream of outputs, and this
type can more easily be expressed as a free monad:

type Enumeratee[I,O,A] = Free [({

type λ[α] = Either[I => α, (O, α)]})#λ, A]

This kind of coroutine is a stream transducer that may
either request an input of type I or produce an output of type
O each time it resumes, and will terminate with a value of
type A.

8. Conclusions and further work
We have seen how we can use trampolines to make recursive
calls on the heap instead of the stack in Scala. The technique
is straightforward but there are some details that we must
implement a certain way, given the abilities and limitations
of the Scala language and the JVM, or else the solution will
not work.

We saw how trampolines relate to the general idea of free
monads over a functor and how all of our concerns about
trampolines, as well as all the benefits, readily transfer to
any such monad.

There is more research to be done on putting these ideas
to work in the Scala compiler—possibly as a plugin—to
enable stackless programming without any additional effort
from the programmer.

Free monads have many more applications than we have
imagined here. With increasing pressure in industry towards
pure functional programming comes the need for a program-
ming model that enables composition of modular computa-
tions that are efficient in terms of time and memory. Promis-
ing work is being done on iteratees and monadic streams, but
there is not yet a very clean API for these in Scala. Perhaps a
library based on free monads could make all the difference.

References
[1] The Scala Standard Library API documentation, available at

http://www.scala-lang.org/api/current

[2] The Scalaz library source code, available at http://scalaz.
org

[3] H. Apfelmus, The Operational Monad Tutorial, in The
Monad Reader 15, January 2010. pp. 37-56, available
at http://themonadreader.files.wordpress.com/
2010/01/issue15.pdf

[4] S. Awodey, Category Theory, Second Edition, Oxford
University Press, New York, 2010.

[5] M. Blažević, Coroutine Pipelines, in The Monad Reader
19, October 2011. pp. 29-50, available at http://

themonadreader.files.wordpress.com/2011/10/

issue19.pdf

[6] Steven E. Ganz and Daniel P. Friedman and Mitchell Wand,
Trampolined Style, in International Conference on Functional
Programming, ACM Press, 1999, pp. 18–27.

[7] E. A. Kmett, Free Monads for Less, in The Comonad Reader,
June 2011, available at http://comonad.com/reader/
2011/free-monads-for-less

[8] J. W. Lato, Iteratee: Teaching an Old Fold New Tricks, in
The Monad Reader 16, May 2010. pp. 19–36, available
at http://themonadreader.files.wordpress.com/
2010/05/issue16.pdf

[9] O. Kiselyov, Incremental multi-level input processing and
collection enumeration, available at http://okmij.org/
ftp/Streams.html

[10] Rúnar Ó. Bjarnason, source code for examples in this
paper, available at https://github.com/runarorama/
Days2012

[11] W. Swiestra, Data types à la carte, in Journal of Functional
Programming, Cambridge University Press, 2008.

[12] J. Voigtländer and Technische Universität Dresden, Asymp-
totic Improvement of Computations over Free Monads, in
proceedings, Mathematics of Program Construction, 2008,
pp. 388–403.

